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Abstract – Artificial Intelligence (AI) technology, including 
Artificial Neural Network (ANN), Fuzzy Logic (FL), and Random 
Forest (RF), have been utilized widely in past literature in 
predicting the behavior of concrete products. Few studies used 
the probabilistic inference approach through Bayesian 
Networks (BN) to envisage the structural health integrity of 
concrete, while the possibility of employing BN algorithms for 
the prediction of its mechanical properties has not been 
investigated yet. This research evaluates the potential 
applicability of BN in predicting the compressive strength of self-
compacting concrete made with various supplementary 
cementitious materials and basalt fibers. Two learning 
algorithms, namely Naïve Bayes and Markov Blanket, were 
employed along with various discretization methods to 
maximize network performance and minimize integral absolute 
error. Research findings showed that the Naïve Bayes classifier 
coupled with K-means discretization tool with 4 segments of 
‘days’ data and 3 segments of the remaining variables gave the 
highest correlation between experimental and predicted values. 
Meanwhile, the Markov Blanket algorithm failed to accurately 
predict the compressive strength. The accuracy of the predicted 
BN was found to be comparable to that obtained from an ANN 
model. 
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1. Introduction 

Bayesian network is a graphical representation of 
probabilistic models that show causal and effect 

relations between the variables and deals with 
uncertainties of a domain [1], [2]. It follows the concept 
of the probability theory, by which a certain domain is 
defined with a set of random variables of possible 
occurrences. The visual illustration of the network 
represents the conditional dependencies among 
variables for a given problem of this domain [2], [3], and 
shows the effect of any two conditionally independent 
variables on each other through intermediary variables 
that separate them [3]. The proposed mathematical 
equation used in BN algorithms is expressed in Eq. (1). 

 

P(H|E,c) =
P(H|c) × P(E|H,c)

P(E|c)
 (1) 

 
In Eq. (1), H, E, and c represent the hypothesis, 

evidence, and background context, respectively. The 
term P(H|E,c) denotes the posterior probability of the 
hypothesis after considering the effect of the evidence E 
on the context c, while P(H|c) represents the prior 
probability of H with respect to c alone. Conversely, 
P(E|H,c) signifies the likelihood of having the evidence in 
the case of the hypothesis and the context both true. The 
last term, P(E|c), can be considered as a normalizing or 
scaling factor, as it is independent of H [4]. The posterior 
probability distribution of BN is obtained by multiplying 
the likelihood “L”, which is defined by Eq. (2), with the 
prior probability and then normalizing.  

 

P(E|H,c) = L(H) = ∏ P(Ei|H)

i

 (2) 

 
The Bayesian network consists of two main 

models, namely qualitative and quantitative [5]. For the 
qualitative models, BN correlates and finds the 
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relationship among the variables through a causal 
structure learning approach [6]. Then, a direct acyclic 
graph (DAG) is generated to represent the variables of 
interest and the casual dependencies through the nodes 
and directed links connecting the nodes, respectively, as 
shown in Figure 1. In this aspect, the arrow links are 
directed from the parent node to its child node. As the 
network adopts an acyclic approach, the possibility of 
ending up at the same starting node is non-existent [7]. 
On the other hand, the quantitative models mainly 
concern the local probability distribution for specifying 
the probabilistic relationships by which the 
dependencies are quantified. This is performed by 
conditional probability tables (CPT) that classify nodes 
with their parents [5]. 

 
Figure 1. Simple Bayesian network structure of a research 

publication. 

 
Bayesian networks have been implemented in a 

wide range of real-world applications, owing to their 
ease in the estimation of certain variables, treatment of 
uncertainties, and decision analysis with quick 
responses to the user [2]. The major applications that 
extensively utilize BN are risk management, quality 
management, financial analysis, medicine applications 
and diagnosis, psychological applications, and various 
engineering applications [2], [8]. Despite the capability 
of experimenting with both continuous and discrete 
variables, many Bayesian network algorithms only deal 
with the latter. As such, all continuous variables are 
discretized and then classified into different categories 
(states), such as high, medium, and low [7]. 

The probabilistic inference of the network is based 
on four steps, initial probability distribution, reasoning 
from cause to effect, combined influence of variables, and 
reasoning from the effect to the cause [7]. Further, BN 
learning algorithms are highly dependent on the type of 
infused data. In the event of using data without a 
hypothesis constraining the relationships between the 
variables, the unsupervised learning algorithms are 

employed. Otherwise, the supervised learning 
algorithms such as Naïve Bayes and Markov Blanket can 
be used for the inference. Naïve Bayes is considered one 
of the most effective learning algorithms for supervised 
machine learning, as it is based on the independencies 
between the predictors [7], [9]. On the other hand, the 
Markov Blanket algorithm is usually used for high-
dimensional models where too many variables affect the 
target node [10].  

This study provides the civil engineering 
community a new method of engaging AI techniques in 
civil engineering applications, in particular, to predict 
the mechanical properties of sustainable self-
consolidated concrete by which a large amount of 
cement was replaced with different supplementary 
cementitious materials. The prediction performance of 
the probability-based network is assessed by comparing 
it with that of a typical ANN that is used to perform the 
prediction. It is anticipated that the probability approach 
can lead to a more in-depth understanding of the 
interaction between the concrete ingredients and their 
effect on the mechanical properties of the hardened 
concrete. 

 
2. Related Work 

Artificial Intelligence (AI) has been implemented 
in various engineering disciplines. The focus of 
employing such a technique in civil engineering is 
narrowed to applications where high accuracy is of 
interest while also saving time and resources. The 
implementation of the Bayesian Network in civil 
engineering applications has mainly focused on 
structural health monitoring systems.  

Arangio et al. [11] combined a neural network 
system along with the probability logic approach of a 
Bayesian network. The developed system was used to 
identify and locate structural damage for a suspension 
bridge. In the study, a two-step strategy was proposed. 
Firstly, various neural networks were trained through 
inputting structural responses of a healthy structure. 
Then, the responses of an unhealthy structure were 
presented. Furthermore, the trained neural networks 
were integrated with the Bayesian network to optimize 
and improve the network’s capabilities. The new 
approach led to an increase of 20% in locating the 
occurred damage and 16% for damage quantification. 

Chen et al. [12] proposed an integrated model 
between support vector regression (SVR) and Bayesian 
evidence framework (BEF) for monitoring the health of 
a dam structure affected by crack opening displacement 
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(COD). Their approach entailed the application of SVR to 
model the nonlinear relationship between the crack 
opening displacement and the caused influencing 
factors. Meanwhile, the BEF approach was applied to 
determine the optimal SVR modeling parameters, such 
as penalty coefficient, loss coefficient, and width 
coefficient of the radial kernel function. The 
establishment of this integrated system with its suitable 
mathematical model enabled its use in real-life 
situations, where the Chencun concrete dam in China 
was evaluated for both normal and abnormal behaviors 
using this novel AI technique. As such, the presented 
model was found to be suitable for evaluating the 
behavior of cracks in concrete dams efficiently. 

Ramos et al. [13] introduced a new approach on 
the use of probability prediction theory to assess the 
structural integrity of a historical building. In their 
methodology, test data from direct testing and past 
literature were used to train the Bayesian network. The 
tests included compressive strength, sonic, and 
ultrasonic testing. For the first test, core samples of 
granite were extracted and tested for both compressive 
strength and modulus of elasticity. For the non-
destructive latter tests, data from the literature were 
collected and inputted in the Bayesian network model. 
As the data of these non-destructive tests have different 
confidence levels, a new concept for the probability 
distribution was introduced. In this concept, a Trust 
Factor (TF) was introduced to scale the standard 
deviation of the parameters based on their confidence 
level. The TF was based on the judgment of many 
professionals in the field. As a result, a very small 
variation was noticed in the mean of the modulus of 
elasticity. Also, the trust factor concept affected the 
uncertainty related to each result by increasing or 
decreasing their standard deviation. 

Marsili et. al [14] proposed a new methodology for 
analyzing masonry structures based on the relationship 
between material strength and visual analysis. A 
Bayesian network was proposed based on the data that 
accounted for quantitative information from previously 
tested masonry structures and data supported by 
engineers specialized in masonry features. The 
parameters included mechanical properties of bricks, 
dimensions, shape, wall-leaf connection, horizontal and 
vertical bed joint characteristics, and mortar mechanical 
properties. The results revealed that the mechanical 
properties of masonry structures can be predicted with 
the network as an early reliability assessment. It was 

concluded that more robust validation could be 
accomplished using further destructive testing.  

  
3. Experimental Methodology 

Concrete design mixes with their respective 
results were obtained from past literature [15] to serve 
as a dataset to train and test the BN and ANN. The 
experimental data were associated with self-compacting 
concrete that replaced cement with various industrial 
by-products to promote its sustainability. This study 
aimed to replace up to 80% of cement with different 
combinations of three main supplementary cementitious 
materials (SCM) namely, fly ash, silica fume, and ground 
granulated blast furnace slag (GGBS). The study outlined 
three distinctive phases, namely binary, ternary, and 
quaternary. 

In the binary mixes, the effect of partial 
replacement of cement with one SCM was investigated. 
The designed concrete mixes followed the 
recommendations of cement replacement from past 
literature [16]–[20]. Accordingly, fly ash, silica fume, and 
GGBS replaced cement by 0-40, 0-20, and 0-80%. In the 
ternary phase of the experimental program, the cement 
content was partially replaced with a combination of two 
SCMs. Finally, the quaternary phase aimed to replace 
80% of the cement material with the combination of the 
three SCMs. Basalt fibers were introduced to the mixes in 
four different ratios ranging from 0.25% to 1%, by 
binder mass. It is worth noting that, among the mixture 
components, the cementitious materials and basalt fiber 
content varied, while the other components, such as 
water to binder ratio, superplasticizer content, and 
coarse and fine aggregates, were kept constant to reduce 
the number of variables. 

The compressive strength test was performed on 
water-cured samples for 3, 7, and 28 days. A total of 226 
data points were used in the current prediction study.  

 
3. 1. Bayesian Network 

Bayesialab commercial software was employed to 
train and test the obtained data with the BN algorithm. 
The software allows the user to choose from a variety of 
discretization techniques and converts continuous data 
into discrete ones (e.g., high, medium, and low) to 
increase the prediction accuracy. Nevertheless, the 
accuracy of the prediction is highly dependent on the 
interpretation of the acquired data by classifying the 
domain and all influencing variables on the results [7]. 
Such knowledge will ease the construction of DAG for 
efficient training and prediction cycles. In addition to the 
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chosen network structure and available discretization 
methods, the inference of BN is highly dependent on the 
type of learning algorithms.  

Among the various machine learning algorithms 
provided in Bayesialab, only two algorithms were 
employed in this study, namely, Naïve Bayes (NB) and 
Markov Blanket (MB). Naïve Bayes is considered one of 
the most effective learning algorithms. It is based on the 
independencies between the predictors, by which it 
assumes that each constituent has an independent effect 
on the results. Meanwhile, the Markov Blanket algorithm 
is usually used for high-dimensional models, where a 
large number of variables affects the target node. By 
using the MB algorithm, the number of parameters was 
reduced, as only the nodes that had hard evidence were 
selected to shield the target node from other nodes in the 
network (Figure 2).  

 

 
Figure 2. Demonstration of Markov Blanket algorithm. 

 
In the current study, the developed BN combines 

multiple independent variables used to develop self-
compacting concrete to predict the compressive 
strength.  The independent variables that served as the 
network inputs included the concrete constituent and 
the testing age. It is worth mentioning that other 
impacting factors, such as water-to-binder ratio (w/b), 
type and quantity of coarse and fine aggregates, and type 
and quantity of the high range water reducer (HRWR) 
were fixed in the original experimental program. Thus, 
they were excluded from the independent variables used 
during the network modeling preparation. As such, the 
used variables were compressive strength (CS), cement 
(C), fly ash (F), silica fume (S), GGBS (G), basalt fibers (B), 
and testing age in days (D). The proposed mathematical 
equation for the compressive strength probabilistic 
inference is simplified as per Eq. (3). 

 

P(C|C,F,S,G,B,D)=
P(CS,C,F,S,G,B,D)

P(C,F,S,G,B,D)
 (3) 

 
The imported data set comprised 226 data points, 

representing a total of 75 different mixes with 3 different 
testing ages and a control mix. Four different 
discretization methods were employed to convert the 
given data into discrete data. Furthermore, the data was 
processed by subdividing it randomly into training and 
testing sets to enable the network and user to validate 
the prediction model. The training data set used 80% of 
the original data, whereas the testing data set used the 
remaining 20%.  

 
3. 2. Artificial Neural Network 

Artificial neural network (ANN) was used to train 
and predict the same concrete data set employed with 
the Bayesian network prediction tool. ANN with a back-
propagation algorithm, shown in Figure 3, was 
developed using MATLAB coding interface and was used 
to train and test the obtained data set. The developed 
code was for a one-hidden layer network that uses the 
log-sigmoid transfer function of Eq. (4).  

 

Log-Sigmoid=
1

1+𝑒−𝑥
 (4) 

Where x is the data after being processed with 
initial weights. 

 

 
Figure 3. Typical one-hidden layer ANN with back-

propagation algorithm. 
 

The sum of square error (SSE) with a threshold 
value of 0.1 was used to stop the training process. The 
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initial weights of the input variables were chosen 
randomly with values between -0.5 and 0.5, while the 
learning rate responsible for changing the weights after 
each learning cycle was used in two values, 0.05 and 0.1. 
The exact training and testing data used in BN were 
employed in ANN for reliability purposes and to have 
accurate verification of the BN inference. Similar to the 
BN, the inputs used in ANN were cement (C), fly ash (F), 
silica fume (S), GGBS (G), basalt fibers (B), and testing 
age in days (D), while the output was the compressive 
strength. The main parameters that were changed 
during training were the learning rate and the number of 
neurons only.   

To evaluate the ability of BN and ANN to predict 
the compressive strength of concrete used herein, the 
integral absolute error (IAE, %) of each technique was 
compared. The IAE was determined using Eq. (5). 

 

IAE (%) = ∑
[(Ei-Pi)2]

0.5

∑ Ei
×100 (5) 

Where Ei and Pi are the experimental and 
predicted results. 
 

4. Results and Discussion 
4. 1. Bayesian Network 

The prediction of concrete compressive strength 
using probabilistic inference is highly dependent on the 
training-testing data and the different discretization 
methods employed. Based on the obtained results from 
using Naïve Bayes or Markov Blanket algorithms, the 
optimum discretization method of the network was 
determined. Validation of the optimum results was 
carried out through the use of IAE (%), as it is statically 
more sensitive than ordinary average error [21]. 
  Five different discretization models were utilized 
to maximize the network’s efficiency and minimize the 
IAE below 10% for acceptable performance [21]. Table 1 
summarizes the IAE of the employed discretization 
methods. Trials with different discretization tools 
revealed that the k-means method with 4 segments of 
‘days’ data and 3 segments of the remaining variables 
gave the highest correlation among all methods with an 
IAE of 4.26%.  

This discretization tool was utilized in the Naïve 
Bayes algorithm to predict the concrete compressive 
strength. The accuracy of the BN prediction is shown in 
the scatter plot of Figure 4(a). The correlation 
coefficient, R2, of the trained network was 0.71. Clearly, 
the predicted compressive strength results deviated 

from the line of equality at values below 20 MPa and 
above 60 MPa. Conversely, Figure 4(b) shows the 
predicted versus experimental compressive strength of 
the testing data set for the same trained network 
configuration. The value of R2 was 0.91, indicating a 
more accurate prediction of the testing data. 

 
Table 1: Different discretization tools used in the study. 
Discretization Tool IAE, % Comments 
R2-GenOpt 8.8 Default  
R2-GenOpt 6.2 3 days intervals  
Density Approximation 11.3 3 intervals 
Density Approximation 11.3 5 intervals 
K-Means 8.27 Default 3 intervals 
K-Means 4.26 4 days intervals 
K-Means 7.37 4 intervals all 
Equal Distances 11.1 Default 3 intervals 
Equal Distances 13.9 7 intervals 
Equal Frequencies 9.2 Default 3 intervals 
Equal Frequencies 9.9 7 intervals 

 

 
(a) 

 
(b) 

Figure 4. Naïve Bayes approach (a) BN predicted vs 
experimental strength for the training dataset and (b) BN 
predicted vs experimental strength for the testing dataset. 
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On the other hand, the Markov Blanket learning 
algorithm showed inconsistent results. As noted earlier, 
this type of algorithm uses only the highly impacting 
factors and shields the influence of the remaining data 
from the target node. In the compressive strength of 
concrete, the main affecting factor to the MB algorithm 
was the ‘days’ data set only. Thus, all other variables 
were excluded from the prediction of compressive 
strength. Consequently, the overall precisions of the 
learning and testing data sets were 60 and 53%, 
respectively. The predicted values of the compressive 
strength had respective values of R2 and IAE of 0.46 and 
13.8%, as illustrated in Figure 5. Such low precision and 
inaccuracy can be attributed to the limiting action of the 
MB algorithm to the required nodes for analysis and to 
restricting the variables to the testing age only.  
 

 
Figure 5: Markov Blanket predicted vs. experimental 

compressive strength. 
 
4. 2. Artificial Neural Network 

The artificial neural network training was carried 
out using 80% of the datasets. As described earlier, the 
back-propagation algorithm maintains continuous 
training cycles until the given SSE threshold of 0.1 is 
attained. The altered network parameters were the 
number of neurons in the hidden layer and the learning 
rate of the network. A total of 7 neurons were used for 
each network’s hidden layer. Each network was tested 
twice with two learning rates, namely 0.05 and 0.1, in a 
total of 14 network configurations shown in Table 2. The 
results from the different training models were with high 
accuracy and their corresponding R2 was approximately 
0.96, as depicted in Figure 6.  

For the testing phase, the acquired weights from 
the trained networks were used to calculate the 
compressive strength for the remaining dataset, i.e. 20%. 
The obtained weights were multiplied by the data inputs 

from the testing set and then processed in the log-
sigmoid transfer function to obtain the predicted 
compressive strength values. The network could 
accurately predict the concrete compressive strength 
with values of R2 and IAE of 0.92 and 4.27%, respectively, 
as per Figure 7. 

 
Table 2.  Utilized ANN configurations in the study. 

Architecture Learning Rate R2 

6-15-1 0.05 0.873 
6-15-1 0.1 0.85 
6-18-1 0.05 0.854 
6-18-1 0.1 0.868 
6-20-1 0.05 0.856 
6-20-1 0.1 0.859 
6-22-1 0.05 0.874 
6-22-1 0.1 0.854 
6-25-1 0.05 0.862 
6-25-1 0.1 0.876 
6-28-1 0.05 0.92 
6-28-1 0.1 0.861 
6-30-1 0.05 0.859 
6-30-1 0.1 0.86 

 

 
Figure 6. ANN predicted vs. experimental results training 

data set. 

 
4. 3. Bayesian Network vs. Artificial Neural Network 

The correlation coefficients of Bayesian network 
training and testing phases by Naïve Bayes classifier 
were 0.71 and 0.91, respectively. Its integral absolute 
error was 4.26%. The prediction sensitivity and accuracy 
were found to be related to the discretization method 
used before processing the data. Additionally, the use of 
different discretization tools within the same model gave 
more accurate results. In contrast, outcomes of the ANN 
for training and testing phases were in high agreement 
with the experimental results with R2 of 0.95 and 0.92, 
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respectively, and an integral absolute error of 4.27%. 
The accuracy of the ANN can be attributed to the absence 
of a data discretization method before processing, as the 
learning algorithm of ANN depends on continuous cycles 
that adjust the difference between the experimental and 
predicted results. This is carried out through the 
distribution of the error between the two values among 
all the initial weights in the network and maintaining the 
process until the required level of accuracy is attained.  

 

 
Figure 7. ANN predicted vs. experimental results for 

testing data set. 

 
Figure 8(a) shows the compressive strength 

results obtained from experimental testing and those 
predicted by BN and ANN. It is clear that both models 
converge close to the 45°-line, indicating a high level of 
accuracy in predicting the compressive strength using 
both techniques. In addition, to evaluate the 
performance of the developed algorithms, the error 
between the experimental and predicted strength is 
plotted in Figure 8(b). The range of error generally 
varied between -10 and +10%, with only 6 out of the 226 
data points (2.6%) falling outside this range. The trend 
lines associated with the ANN and BN prediction data 
points are also plotted. The respective slopes of the two 
networks were 0.061 and 0.013, indicating that the 
Bayesian network structure renders a slightly more 
accurate and precise prediction of the compressive 
strength. 

 
5. Conclusions 

This study uses probability-based algorithms to 
predict the compressive strength of concrete. 
Discretization methods used in the training phase of BN 
are highly impactful on the acquired results. The Naïve 
Bayes algorithm used in BN was found to be superior to 
Markov Blanket with IAE and R2 of 4.26% and 0.91, 

respectively. The discretization method that was used in 
the Naïve Bayes algorithm to attain a high level of 
inference was the K-mean model discretization of 4 
intervals of the ‘days’ dataset and 3 intervals for the 
remaining ones. Moreover, the Markov Blanket 
algorithm failed to predict the behavior of the 
compressive strength with its sole dependence on the 
‘days’ parameter. The ANN model predicted the 
compressive strength with similar precision to that of 
the BN. Nevertheless, the accuracy of the BN was slightly 
superior to that of the ANN model. Ultimately, the 
compressive strength of self-compacting concrete made 
with different types and quantities of additives could be 
accurately predicted using the probabilistic inference 
approach through Bayesian networks. 

 

 
(a) 

 
(b) 

Figure 8. (a) Correlation between BN and ANN predicted 
strength and experimental strength and (b) Error 

associated with the ANN and BN. 
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