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Abstract - This paper presents the behaviour and design 
guidelines of cylindrical steel liquid storage tanks subjected to 
various strong earthquake excitations. The authors aim to 
develop practical design equations and charts estimating the 
buckling strength of the cylindrical steel liquid-filled tanks 
subjected to seismic loads. Numerical analysis is used to 
evaluate the buckling strength of cylindrical steel liquid-filled 
tanks. Finite element analysis is performed using the 
commercial computer program ANSYS. Both geometrically 
perfect and imperfect tanks are studied. The modelling method, 
appropriate element type, and the necessary number of 
elements to use in numerical analysis are recommended. The 
main phenomena addressed in this paper include pre- and post-
buckling strength of the tanks. Field observations during past 
earthquakes together with finite element analyses and 
published experimental results are used to substantiate the 
accuracy of employed finite element analysis. Based on the 
extensive parametric study the accuracy of the current design 
guidelines is assessed. According to the results of the parametric 
study of the perfect tanks, the buckling strength decreases 
significantly as the diameter-to-thickness ratio (D/t) increases, 
while it decreases slightly as the height-to-diameter ratio (H/D) 
increases. The buckling strength of the tanks decreases 
significantly as the amplitude of initial geometric imperfection 
increases. Design equations and design curves for the cylindrical 
steel liquid-filled tanks of various geometries subjected to 
different earthquakes are proposed and presented. 
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1. Introduction 
Liquid storage tanks are subjected to horizontal 

and vertical ground accelerations during earthquakes. 
The damages of petroleum storage tanks were reported 
due to earthquakes of 1933 Long Beach, 1952 Kern 
County, 1964 Alaska, 1971 San Fernando, 1979 Imperial 
Valley, 1983 Coalinga, 1992 Landers, 1994 Northridge, 
and 1995 Kobe [1]. The American Lifelines Alliance 
(ALA) [2] reported the failure modes occurred due to 
steel storage tanks. These failure modes are shell 
buckling mode, roof miscellaneous steel damage, 
anchorage failure, tank support system failure, 
foundation failure, hydrodynamic pressure failure, 
connecting pipe failure, and manhole failure. This study 
is interested in the shell buckling mode of the liquid-
filled cylindrical tanks subjected to the horizontal 
earthquake accelerations. Based on previous studies in 
the literature, there are two questions that still need 
answers: first, How geometric imperfection can affect 
the seismic buckling capacity of the cylindrical steel 
tanks?; second, what are the interaction effects of 
diameter-to-thickness (D/t) and height-to-diameter 
(H/D) ratios on seismic local buckling strength of the 
steel cylindrical tanks? Therefore, the aim of this study is 
twofold: first, to investigate the effect of geometric 
imperfection on the seismic buckling strength of the 
cylindrical steel tanks; second, to evaluate the 
interaction effects of H/D and D/t ratios on the seismic 
buckling strengths of liquid-filled steel cylindrical tanks. 
 

2. Literature review 
In terms of the seismic behavior of the cylindrical 

tanks, Housner [3] reported that the hydrodynamic 
behaviors between water and the storage tanks which 
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are subjected to horizontal accelerations can be 
distinguished into two kinds. First, impulsive mass, a 
mass of water is rigidly attached to the tank at the proper 
height. Second, convective mass, the horizontal 
acceleration from the tank excites a mass of water into 
oscillations. The impulsive and convective components 
should be separated to characterize the hydrodynamic 
response of tank–liquid systems excited horizontally [3]. 

Previous research was conducted to investigate 
the seismic local buckling of unstiffened steel cylindrical 
tanks using experimental study and finite element 
method (FEM). The buckling of tall steel cylindrical wine 
storage tanks was investigated using a shaking table to 
generate the characteristics of the 1980 Livermore 
earthquake [4]. Housner and Haroun [5] conducted the 
force vibration tests to study the dynamic response of 
full-scale liquid-filled steel cylindrical tanks. Seismic 
buckling strengths of different sizes of cylindrical steel 
tanks under earthquake loads were studied using FEM 
[6-9]. Virella [6] used a commercial finite element 
program ABAQUS to study dynamic buckling of the 
anchored steel tanks with the height-to-diameter ratio 
(H/D) less than 1.0, finding that the seismic buckling 
occurred at peak ground acceleration (PGA) between 
0.25g to 0.35g. Djermane [7] evaluated the PGA values 
that caused the instability state of the steel cylindrical 
tanks using FEM. Sobhan [10] used nonlinear static 
pushover to investigate the buckling behavior of the 
anchored steel tanks, finding that bi-directional 
excitation obtained from static pushover analysis is 
similar to that obtained from dynamic buckling analysis. 
Sezen et al. [11] used ANSYS computer program to study 
liquefied gas-structure interaction and a simplified 
model of three tanks in Turkey that experienced an 
earthquake on August 17, 1999; they reported that shear 
and bending moments are overestimated if the fluid is 
modeled as a single rigid mass. 

  

3. Finite Element Models 
Five different geometric configurations of the 

cylindrical tanks are analyzed with height-to-diameter 
(H/D) ratios of 0.43, 0.67, 1.00, 1.46, and 2.41 and the 
diameter-to-thickness (D/t) ratios of 910, 1013, 1216, 
1612, and 2130 to investigate the buckling behaviors of 
various sizes of the cylindrical tanks. The geometries of 
the cylindrical tanks are illustrated in Table 1 and Fig. 1. 

The material for all cylindrical storage tanks is 
steel with a modulus of elasticity, E = 200 GPa, Poisson’s 
ratio, ν = 0.3, and the mass density, ρ = 7,850 kg/m3. 
Bilinear isotropic hardening of the steel is included with 

the yield stress of 345 MPa and the tangent modulus of 
13.79 GPa. The liquid-filled inside the cylindrical tanks is 
water with the bulk modulus of 2,068.4 MPa, and the 
mass density of 1,000 kg/m3. 

D
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Water Depth 
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(b) 

Figure 1. System Geometry of the cylindrical tank: (a) 
dimension of the cylindrical steel tank; (b) FEA modelling of 

model A. 
 

Table 1. Geometries of the cylindrical tanks. 

Model 
H 

(m) 
D 

(m) 
t 

(mm) 
Hr 

(m) 
H/D D/t 

A 6.1 9.1 10.0 0.853 0.67 910 

B 18.3 7.6 7.5 0.713 2.41 1013 

C 15.2 15.2 12.5 1.425 1.00 1216 

D 20.0 13.7 8.5 1.284 1.46 1612 
E 9.1 21.3 10.0 2.000 0.43 2130 

 
ANSYS computer program was used to carry all 

computations. SHELL181 element was used to be the 
element for the cylindrical steel tanks. SOLID186 
element was used to be the element for water-filled 
inside the cylindrical tanks. SHELL181 is a four-node 
element with six degrees of freedom at each node 
(translation in x, y, and z directions, and rotation about 
x, y, and z axes). SOLID186 is a higher-order 3-D 20-node 
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having three degrees of freedom per node solid element 
that exhibits quadratic displacement behavior [12]. The 
elements of SHELL181 for models A, B, C, D, and E were 
modeled with 4174, 5513, 8838, 7941, and 7198 
elements, respectively. The elements of SOLID186 for 
models A, B, C, D, and E were modeled with 850, 941, 
1180, 1021, and 978 elements, respectively. 
 
4. Modal Analysis 

The natural frequencies and mode shapes are the 
parameters that are used to find mass and stiffness 
coefficients for Rayleigh damping method in the 
transient analysis. The equation of motion for an 
undamped system vibrating freely is expressed in matrix 
notation as in Eq.1.  

 
                   [M]{ü} + [K]{u} = {0}                                 (1) 
 
Where [M] is structural mass matrix, [K] is 

structural stiffness matrix, {ü} is nodal acceleration 
vector, and {u} is nodal displacement vector. 

For a linear system, free vibration will be harmonic 
of the form in Eq. 2. 

 
                                  {u} = {ϕi} cos ωit                                    (2) 
 

Where {ϕi} is eigenvector representing the mode 
shape of the i th natural frequency, ωi is i th natural circular 
frequency in term of radians per unit time, and t is time. 

The equation becomes: 
 
            (−ω2[M] + [K]){ϕi} = {0}                       (3) 
 
Eq. 3 is satisfied if the quantity of (−ω2[M] + [K]) 

or {ϕi} is equal to zero. However, the condition that the 
eigenvector is zero, {ϕi} = 0, is trivial; therefore, this 
condition is not of interest. The condition of interest is 
Eq. 4. 

 
                   |[K] − ω2[M]| = 0                                  (4) 
 
The finite element simulation may solve up to n 

values of ω2 and {ϕi} to satisfy Eq. 3 where n is the 
number of degrees of freedoms (DOFs). In the modal 
analysis, the output is the natural frequencies (f) instead 
of the natural circular frequencies (ω) which are 
represented as in Eq. 5. 

 

                    fi =
ω

2π
                                 (5) 

 
where fi is ith natural frequency in terms of cycles 

per unit time. 
The natural frequencies of the cylindrical tanks 

filled with water up to 90% are represented in Table 2. 
 

4. 1. Dumpling Ratios 
Rayleigh Damping is a procedure of classical 

damping, which is used in the ANSYS computer program. 
For simplicity and numerical efficiency, the damping is 
assumed as Rayleigh mass proportional damping as Eq. 
6 and Eq. 7. 

 
                              [C] = a0[M]                          (6) 
 
                              a0 = 2ωnζn            (7) 
 
Where a0 is mass coefficient, and ζn is critical 

damping ratio. 
For the steel structure, the critical damping ratio is 

generally between 2% and 3% [7]. In this study, the 
value of 2% is adopted. This mass coefficient (𝑎0) is to be 
input into the transient analysis to indicate the damping 
ratio of the structure. The mass coefficients of each 
model are represented in Table. 2. 

 
Table 2. First natural frequencies and mass coefficients 

Model 
First Natural 

Frequency (Hz) 
Mass 

Coefficient (𝐚𝟎) 
A 4.259 1.070 
B 1.993 0.501 
C 2.293 0.576 
D 1.824 0.458 
E 2.070 0.520 

 

5. Nonlinear Seismic Analysis 
The transient dynamic analysis is the technique for 

the response of a structure subjected to a time-
dependent loading. Inertia and damping effects are 
considered for the transient dynamic analysis. The 
damping ratio of 2% is adopted in this study. The 
equation of motion, Eq.8, is solved by the transient 
structure simulation in ANSYS. 

 
                     [M]{ü} + [C]{u̇} + [K]{u} = {F(t)}                  (8) 

 
Where [M] is the mass matrix, [C] is damping 

matrix, [K] is stiffness matrix, {ü} is nodal acceleration 
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vector, {u̇} is nodal velocity vector, {u} is nodal 
displacement, {F(t)} is load vector, and t is time. 

Earthquake loads in El Centro during May 18, 
1940, are used in this study.  Numerical values of these 
earthquakes are in the unit of g, the acceleration due to 
gravity is presented in Fig. 2. Since the PGA is 0.319g at 
time = 2.02 s, the accelerogram from 0 s to 8 s is used in 
this study to reduce CPU time-consuming. 

 

 
Figure 2. Accelerogram of North-South component of El 

Centro earthquake. 
 

5. 1. Perfect Geometric Tanks 
Budiansky and Roth criterion [13] was used to 

generate a pseudo-equilibrium path in this study. 
Buckling instability occurs when a small increase in the 
pulse intensity causes a strong increase rate of 
deflection. Therefore, different analyses of the structure 
for several loads (PGAs) must be constructed. The node 
which gave the maximum displacement of each model 
was used to find the pseudo-equilibrium path. For 
example, node 2638 has maximum displacement when 
PGA is 0.7g as illustrated in Fig. 3, and node 1725 has 
maximum displacement when PGA = 0.1g as illustrated 
in Fig. 4. Fig. 5 illustrates the pseudo-equilibrium paths 
and the dynamic buckling values of models A, and C. The 
dynamic buckling values of models A, and C are 0.72g, 
and 0.56g, respectively. Fig. 6 illustrates the pseudo-
equilibrium paths and the dynamic buckling values of 
model B. The dynamic buckling value of model B is 0.55g. 
Fig. 7 illustrates the pseudo-equilibrium paths and the 
dynamic buckling values of models D and E. The dynamic 
buckling values of models D and E are 0.15g and 0.075g, 
respectively. 

Transient response in terms of nodal displacement 
with an increase in PGA was also observed in this study. 
Fig. 8 shows the significant jump in the nodal 
displacement of model C which indicates that the 
structure is unstable for PGA = 0.6g. 

 

 
Figure 3. Deformation of model C at PGA = 0.7g and t = 2.52s.                       

 

 
Figure 4. Deformation of model E at PGA = 0.1g and t = 2.34s.                     

 
 

 
Figure 5. Pseudo-equilibrium paths for models A and C. 
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Figure 6. Pseudo-equilibrium path for model B. 

 
 

 
Figure 7. Pseudo-equilibrium paths for models D and E. 

 

 
Figure 8. Transient response for model C. 

 
5. 2. Imperfect Geometric Tanks 

Imperfections of the cylindrical steel tanks are 
included in this study in terms of geometry imperfection 
to investigate the responses of the initial imperfection 
cylindrical steel tanks to the seismic loading. According 

to EC3 [14], if the construction is considered an excellent 
quality, Eq. 9 can be used to indicate the imperfection 
amplitude. 

                       
w0

t
=

1

40
√

D

t
                         (9) 

 

Where 𝑤0 is the imperfection amplitude, t is the 
thickness of the tank, and D is the diameter of the tank. 

The dynamic buckling values of the tanks decrease 
in the range between 5% to 33% when the initial 
imperfect geometries are considered. Therefore, the 
imperfection in geometry significantly affects the 
seismic buckling capacity of the cylindrical steel tank. 
The pseudo-equilibrium paths of initial imperfect 
geometric tanks are represented as in Fig. 9, 10, and 11. 
Fig. 12 presents the transient response curve which 
shows the significant jump of model D. The effects of 
initial imperfect geometry on the dynamic buckling 
capacities of the cylindrical steel tanks filled with water 
up to 90% height are represented in Table 3. 
 

 
Figure 9. Pseudo-equilibrium path for model A with initial 

imperfection. 
 

 
Figure 10. Pseudo-equilibrium paths for models B and C with 

initial imperfection.    
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Figure 11. Pseudo-equilibrium paths for models D and E 

 
 

 
Figure 12. Transient response for model D 

 
Table 3. Seismic buckling capacity 

 
 

Model 

 
 

H/D 

 
 

D/t 

Dynamic Buckling 
Capacity, PGA (g) 

Perfect 
Geometry 

Initial 
Imperfect 
Geometry 

A 0.67 910 0.72 0.64 

B 2.41 1013 0.55 0.51 

C 1.00 1216 0.56 0.53 

D 1.46 1612 0.15 0.13 

E 0.43 2130 0.075 0.05 

 

5. Estimated Design Equations 
Nonlinear regression analysis was adopted in this 

study to estimate the interaction effects of H/D and D/t 
ratios on the dynamic buckling capacities of the tanks for 
both perfect and initial imperfect geometry cases. The 
design equation for the geometrically perfect tanks can 

be estimated as Eq. 10. Design equation for the initial 
geometrically imperfect tanks can be estimated as Eq. 11. 

 
PGA =  −0.142 ln(H D⁄ ) − 1.22(10−4)(D t⁄ )1.2 + 1.132        (10) 

  R2 = 0.9702 

 
PGA = −0.117 ln(H D)⁄ − 1.12(10−4)(D t⁄ )1.2 + 1.035         (11) 

R2 = 0.9581 
 

From Eqs. 10 and 11, the D/t ratio has a significant 
negative effect on the dynamic buckling capacity. If the 
D/t ratio increases, the dynamic buckling capacity will 
significantly decrease. An increase in the H/D ratio also 
shows a negative effect on dynamic buckling capacity; 
however, its effect is less significant than the D/t ratio. 
 
 

5. Conclusion 
This paper deals with the seismic buckling of steel 

tanks with fixed support subjected to the horizontal 
component of a real earthquake. The interaction effects 
of D/t and H/D ratios on the dynamic buckling are 
investigated, and estimated design equations are 
proposed. Results show that the D/t ratio is an important 
parametric factor of the seismic buckling strength of the 
liquid-filled cylindrical tank. The dynamic buckling 
capacity of the tank decreases significantly when the D/t 
ratio increases. An increase in the H/D ratio also seems 
to have a negative effect on the seismic buckling 
strength; however, its effect is less significant compared 
to the D/t ratio. Another factor that can reduce the 
seismic buckling strength is geometric imperfection. 
This study found that initial geometric imperfection 
significantly reduces the seismic buckling capacity.  
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