
Avestia Publishing 

International Journal of Civil Infrastructure (IJCI) 

Volume 5, Year 2022 

ISSN: 2563-8084 

DOI: 10.11159/ijci.2022.001 

Date Received: 2021-12-15 

Date Accepted: 2021-12-22  

Date Published: 2022-01-06 

1 

Intelligent Data-Driven Models for Simulating 
Formwork Labour Productivity in High Rise Buildings 

 
Nehal Elshaboury1, Abobakr Al-Sakkaf2,3, Ghasan Alfalah4 

Eslam Mohammed Abdelkader5 
1Construction and Project Management Research Institute/Housing and Building National Research Centre, Giza, 

Egypt; nehal_ahmed_2014@hotmail.com 
2Department of Architecture & Environmental Planning/College of Engineering & Petroleum/Hadhramout 

University, Mukalla, Yemen  
3Department of Building, Civil and Environmental Engineering/Concordia University, Montréal, Canada; 

abobakr.alsakkaf@concordia.ca 
4Department of Architecture and Building Sciences/King Saud University, Riyadh, Saudi Arabia; 

galfalah@ksu.edu.sa 
5Structural Engineering Department/Faculty of Engineering/Cairo University, Giza, Egypt; 

eslam_ahmed1990@hotmail.com 
 
 

Abstract - Forecasting accurate labour productivity is critical 
in construction project management because construction 
projects are labour-intensive. This study proposes eight 
intelligent data-driven models for emulating formwork labour 
productivity in high rise buildings. These models encompass an 
adaptive neuro-fuzzy inference system trained using genetic 
algorithm (ANFIS-GA), an adaptive neuro-fuzzy inference 
system trained using particle swarm optimization algorithm 
(ANFIS-PSO), generalized regression neural network (GRNN), 
back-propagation artificial neural network (BP-ANN), Elman 
neural network (ENN), regression trees (RT), support vector 
machines (SVM) and Gaussian process regression (GPR). The 
models are applied to two high-rise buildings in Montreal, 
Canada to test their prediction capabilities. The accuracies of 
the developed data-driven models are investigated using the 
performance metrics of mean absolute percentage error 
(MAPE), mean absolute error (MAE), root-mean squared error 
(RMSE), root relative squared error (RRSE) and relative 
absolute error (RAE). The assessment metrics show that the 
GRNN model exhibits better and stable performance than the 
remainder of the prediction models (MAPE 8.98%, MAE 0.13, 
RMSE 0.19, RAE 0.45 and RRSE 0.54). It is also derived that the 
work method and temperature sustain the high influence on 
labor productivity. It can be anticipated that the developed 
GRNN model, can be a valuable decision-making tool for 
forecasting construction labour productivity in construction 
projects. 

Keywords: Labour productivity, data-driven, high rise 
buildings, generalized regression neural network, 
regression tree, Gaussian process regression. 
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1. Introduction 
The performance of the construction sector is 

critical in both developed and developing countries. 
This sector contributes to the gross domestic product 
and economic development of any country [1-3]. As a 
result, increasing construction productivity attracts 
more investment, boosts industry competitiveness, and 
creates job opportunities [4]. The construction sector is 
labour-intensive, with labour expenses accounting for 
30-60% of the overall project expenditures [5-6]. 
Therefore, boosting labour productivity might improve 
the performance of building projects. However, the 
construction industry is confronted with several 
problems, including diminishing productivity growth 
[7].  

Productivity is not used to estimate the cost of 
resources; rather, it quantifies the relationship between 
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the resources utilized and the product produced [8-10]. 
In the construction industry, productivity is usually 
described as the ratio of an amount of output (e.g., 
money, product, or service) to a unit of resource input 
(e.g., labour, machines, materials, and money) [11]. 
Productivity may be quantified at three levels: 
industry/sector, project, and activity/process. The 
project productivity level is preferred since it assists 
construction businesses in identifying areas for 
improvement [12]. 

Quantifying and identifying the 
interdependencies among significant elements is 
required for modelling construction labour 
productivity. The current method of predicting 
productivity rates is based on an estimator's opinion, 
published productivity data, or previous project data. 
Personal bias and staff turnover impact the accuracy of 
depending on estimators' views. The reported 
productivity figures do not reflect a contractor's 
performance, but rather the industry's average 
productivity rates [13]. Past project data generally 
yields the most accurate and trustworthy estimate [1]. 
As a result, proper modelling of construction labour 
productivity allows avoiding the subjectivity and 
irrelevance of the old technique. These models capture 
the variance in productivity with regard to the 
influencing input parameters, resulting in successful 
construction project planning and scheduling [14-15]. 
 

2. Related Work 
Artificial intelligence is deemed to be an effective 

technique for forecasting construction labor 
productivity. Heravi and Eslamdoost [16] employed a 
back propagation neural network (BPNN) model to 
predict labour productivity. When early stopping and 
Bayesian regularization were compared, Bayesian 
regularization outperformed early stopping. A 
sensitivity analysis was also performed to assess the 
impact of each input element on the prediction 
performance of the models. El-Gohary et al. [1] applied 
neural networks to estimate construction labour 
productivity. To benchmark construction labour 
productivity, many activation and transfer functions, as 
well as a wide variety of influencing factors, were used. 
When compared to standard approaches in the 
literature, the suggested model produced more accurate 
findings.  

Golnaraghi et al. [8] compared the results of 
BPNN, general regression neural network (GRNN), 
radial base function neural network (RBFNN), and 

adaptive neuro-fuzzy inference system (ANFIS) to 
evaluate labour productivity. According to the results, 
BPNN outperformed other approaches for predicting 
labor productivity. Mlybari [17] estimated labour 
productivity using GRNN, artificial neural networks 
(ANN), support vector machine (SVM), and multiple 
additive regression trees (MART). According to the 
findings, the GRNN model outperformed the other 
approaches for forecasting labour productivity in 
concrete pouring and finishing as well as steel fixing. 

Mohammed Abdelkader et al. [18] compared an 
ensemble of machine learning models for the sake of 
estimating loss of productivity as a result of change 
orders. In the developed model, the loss of productivity 
was quantified with regards to type of work, its impact, 
number of change orders, their frequency, average size 
of change orders and change order hours. The utilized 
machine learning models encompassed radial basis 
neural network, generalized regression neural network, 
cascade forward neural network, Elman neural 
network, back propagation neural network, multiple 
linear regression and hybrid particle swarm 
optimization-liner regression. It was evinced that radial 
basis neural network surpassed other machine learning 
models attaining mean absolute percentage error, mean 
absolute error and root mean square error of 2.44%, 
0.014 and 0.027, respectively.  

Agrawal and Halder [19] studied factors that 
influence construction labour productivity. By adopting 
relative importance index, the levels of importance of 
the studied factors were explored. Results 
demonstrated that appointing competent project 
labour, payments on time and skilled labour were 
appended as the most implicating indicators on labour’s 
productivity. Alrefaie et al. [20] deployed polynomial 
regression to forecast labour productivity of 
reinforcement rebar. In their model, a set of 
explanatory variables was studied such as rainfall 
distribution, solar radiation, dry bulb temperature, 
wind speed and relative humidity. Results illustrated 
that weather conditions managed to influence labour’s 
productivity by 43%.     

Hai and Van Tam [21] built a regression-based 
model to analyse labour’s productivity of construction 
workers. They tackled factors pertaining to work time, 
motivation, working safety, working conditions, natural 
environment, etc. It was anticipated that factors in 
relation with construction workers are highly 
influential on labour productivity. Dixit [22] 
investigated the factors influencing on-site construction 
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productivity drawing on multiple regression and 
statistical analysis. It was revealed that change in scope, 
revision in drawings and response to change orders 
highly impact construction productivity.     

 
3. Model Development  

The framework of the developed model for 
forecasting the labour productivity of formwork 
assembly is presented in this section. The framework, 
as illustrated in Figure 1. The first step is to define the 
factors affecting labour productivity in high rise 
buildings. The present research study explores the 
implementation of eight types of data-driven machine 
learning models, namely ANFIS-GA, ANFIS-PSO, GRNN 
[23-24], BP-ANN [25-26], ENN [27-28], RT [29-30], SVM 
[31-32] and GPR [33-34]. The validation process is 
carried out hinging upon the performance metrics of 
MAPE, MAE, RMSE, RAE and RRSE. In the ANFIS-GA and 
ANFIS-PSO, genetic algorithm and particle swarm 
optimization algorithms are used to estimate the 
parameters of the membership function in the ANFIS 
model. Using the input and target data, the fuzzy 
inference system is built. The ANFIS model output is 
calculated, and error objective functions are minimized 
[35]. Some machine learning models may over perform 
with regards to some performance metrics. However, 
they may under perform with respect to others. Hence, 
average ranking algorithm is exploited to establish a 
consolidated ranking of the data-driven models [36-37]. 
Eventually, a correlation matrix is constructed to look 
into the dependencies between the input and output 
variables. 

     
4. Performance Metrics  

As discussed previously, the developed model 
accommodates the five performance evaluation metrics 
of MAPE, MAE, RMSE, RAE and RRSE that are described 
in Eq. 1, Eq. 2, Eq. 3, Eq. 4 and Eq. 5, respectively [38-
41].  
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Where K is number of available observations in 
the dataset. Oi and Pi are the actual and predicted 
labour productivities, respectively. It should be 
highlighted that lower values of MAPE, MAE, RMSE, RAE 
and RRSE indicate more accurate intelligent data-driven 
model.  

 

 
Figure 1. Flowchart for predicting formwork labour 

productivity.  

 
5. Numerical Example 

Over eighteen months, data on labour 
productivity was collected from two high-rise buildings 
in Montreal, Canada [42]. The first structure was built of 
concrete and had a flat slab construction system. It had 
17 floors and a surface area of 68,000 m2, and it took 
three years to build. The second structure employed the 
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same structural system as the first. These projects 
include a total of 221 data points for formwork activity. 
The data includes project, crew, and weather-related 
parameters. Data related to job type and procedure, as 
well as floor level, are classed as project data, whereas 
gang size and labor percentage belong to crew data. The 
factors utilized in the weather category include 
temperature, humidity, precipitation, and wind speed. 

The aforementioned factors must be taken into 
account since they affect daily work productivity. Table 
1 depicts additional statistical parameters for the nine 
variables. It should be noted that the work type includes 
three forms of formwork: slabs (1), walls (2), and 
columns (3). Furthermore, the work approach 
incorporates built-in place (1) and flying forms (2). The 
number of floors is referred to as the floor level. The 
gang size in the crew category refers to the number of 
people in a crew. In addition, the labour percentage is 
the ratio of labour size to gang size. Temperature, 
humidity, and wind speed are measured in Celsius (Co), 
percentage (%), and kilometres per hour, respectively. 
Furthermore, precipitation can be classified as no 
precipitation (0), light rain (1), snow (2), or rain (3).  

The effectiveness of the developed data-driven 
models for forecasting formwork labour productivity is 
investigated in this study. To anticipate worker 
productivity in two high-rise buildings in Montreal, 
Canada, the traditional BP-ANN model is used as the 
benchmark model. The dataset is divided into two 
parts: 80 percent for training and 20 percent for testing. 

 
Table 1. Statistical parameters of input and output factors. 

Variable Min Max Mean 
Standard 
deviation 

Work type (C1) 1 3 1.43 0.51 
Work method 

(C2) 
1 2 1.44 0.50 

Floor level (C3) 1 17 11.38 3.75 
Gang size (C4) 8 24 16.03 5.07 

Labour 
percentage (C5) 

29 47 35.49 3.79 

Temperature(C6) -26 25 4.08 12.03 
Humidity(C7) 18 97 66.34 15.67 

Precipitation (C8) 0 3 0.28 0.60 
Wind speed (C9) 3 43 15.42 8.46 
Productivity (Y1) 0.82 2.53 1.57 0.35 

A sample of 50 data observations of the actual 
and predicted labour productivity using RT, BP-ANN 
and ANFIS-PSO are presented in Figures 2, 3 and 4, 

respectively. It can be noticed that RT managed to 
simulate the actual labour productivity accurately 
producing very close predicted values to the actual 
ones. As for BP-ANN, it managed to yield acceptable 
level of accuracies. However, it still underperformed in 
some data observations. With regards to ANFIS-PSO, it 
failed to predict the actual labour productivity resulting 
very far predicted values from the actual values.   

 
Figure 2: Actual and predicted labour productivities using RT 

 
Figure 3: Actual and predicted labour productivities using 

BP-ANN 
 

The error histograms with 25 bins in RT, BP-ANN 
and ANFIS-PSO models are depicted in Figures 5, 6 and 
7, respectively. It can observed that RT managed to 
induce very close values to zero error in most of the 
instances.   
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Figure 3: Actual and predicted labour productivities using 

ANFIS-PSO 

 
Figure 4: Error histogram in RT model 

 
Figure 5: Error histogram in BP-ANN model 

 

 
Figure 6: Error histogram in ANFIS-PSO model 

 

Table 2 reports a comparison between simulated 
and actual labour productivity estimates. GRNN model 
accomplished high prediction performance, whereas it 
provided MAPE, MAE, RMSE, RAE and RRSE of 7.21%, 
0.1, 0.22, 0.35 and 0.63, respectively. GRNN also 
achieved very promising results attaining MAPE, MAE, 
RMSE, RAE and RRSE of 8.98%, 0.13, 0.19, 0.45 and 
0.54, respectively. On the contrary, ANFIS-PSO yielded 
the highest prediction errors such that its values of 
MAPE, MAE, RMSE, RAE and RRSE are 26.26%, 0.4, 0.5, 
1.4 and 1.4, respectively. ENN obtained acceptable 
prediction performance with MAPE, MAE, RMSE, RAE 
and RRSE are 10.33%, 0.15, 0.22, 0.52 and 0.62, 
respectively.      

 
 

Table 2: Comparative analysis of the data-driven models for 
predicting labour productivity.  

Prediction 
model 

MAPE MAE RMSE RAE RRSE 

ANFIS-GA 23.47% 0.35 0.44 1.22 1.25 

ANFIS-PSO 26.26% 0.40 0.50 1.40 1.40 

GRNN 8.98% 0.13 0.19 0.45 0.54 

BP-ANN 10.38% 0.15 0.22 0.53 0.63 

ENN 10.33% 0.15 0.22 0.52 0.62 

RT 7.21% 0.10 0.22 0.35 0.63 

SVM 20.31% 0.31 0.39 1.07 1.10 

GPR 10.03% 0.149 0.21 0.52 0.59 
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The results of the average ranking algorithm are 
recorded in Table 3. As can be seen, GRNN outranked 
the remainder of the data-driven models whereas it 
accomplished mean and standard deviation of 0.8 and 
1.4, respectively. RT was ranked in the second place 
followed by GPR in the third place. On the other hand, 
ANFIS-PSO and ANFIS-PSO were ranked in the seventh 
and eight places, respectively. Analytical comparisons 
also illustrated that GRNN provided the most stable and 
robust performance with least standard deviation. 
However, RT and GPR experienced explicit variations 
across the multiple performance indicators.   

 
Table 3: Final rankings of data-driven models.  

Prediction 
model 

Mean 
ranking 

Standard 
deviation 

of rankings 

Final 
ranking 

ANFIS-GA 7 0 7 

ANFIS-PSO 8 0 8 

GRNN 1.8 0.40 1 

BP-ANN 4.6 0.49 5 

ENN 3.2 0.40 4 

RT 2.6 1.96 2 

SVM 6 0 6 

GPR 2.8 1.17 3 

 
Table 5 reports the correlation between the 

design input explanatory variables and labour 
productivity. It can be interpreted that the highest level 
of correlation existed between gang size and 
temperature, gang size and wind speed, and labour 
productivity and temperature. It is also shown that 
temperature and work method exhibit the highest 
influence on labour productivity. On the other hand, 
humidity and labour percentage have the least 
correlation with labour productivity. In this regard, the 
correlation values of work method, temperature, 
humidity and labour percentage with labour 
productivity are -0.353, 0.589, -0.053 and 0.09, 
respectively.     
 

 

 

6. Conclusion  
This study presented eight intelligent data-driven 

models for forecasting labour productivity in high rise 
buildings. To assess the effectiveness of the suggested 
models, historical data from two high-rise structures 
were collected. Eighty percent of the data was utilized 
to train the models, while the remaining twenty percent 
was used to test and validate the models. As input 
parameters for the models, nine factors related to the 
project, crew, and weather conditions were chosen. 
Performance analysis evinced that GRNN provided the 
lowest prediction error (MAPE 8.98%, MAE 0.13, RMSE 
0.19, RAE 0.45 and RRSE 0.54). Nevertheless, ANFIS-
PSO obtained the lowest prediction accuracies (MAPE 
26.26%, MAE 0.4, RMSE 0.5, RAE 1.4 and RRSE 1.4). In 
this regard, GRNN performed better than BP-ANN, ENN, 
SVM, GPR, ANFIS-GA and ANFIS-PSO by 13.97%, 
13.28%, 54.8%, 10.94%, 60.27% and 60.98%, 
respectively. It was also inferred that GRNN produced 
the most stable ranking over the five investigated 
performance indicators. As for GPR and RT, their 
rankings were highly variable with the performance 
indicators. It was also found that RT accomplished the 
second ranking based on the average ranking algorithm 
while ANFIS-GA and ANFIS-PSO were the lowest ranked 
intelligent data-driven models. The correlation analysis 
manifested that work method and temperature are 
highly correlated with formwork labour productivity 
while humidity and labour productivity are less 
influential on the labour productivity. As a result, the 
GRNN can be stand as an improved decision-making 
platform for predicting formwork labor productivity in 
high rise buildings.  
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Table 4: Final rankings of data-driven models.  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 Y1 

C1 1 -0.761 -0.052 -0.175 -0.135 -0.122 -0.110 -0.037 0.065 -0.353 

C2  1 0.225 -0.036 0.177 0.078 0.176 -0.057 0.030 0.328 

C3   1 -0.352 0.142 0.358 0.048 -0.288 0.235 0.301 

C4    1 -0.310 0.390 -0.167 0.065 -0.415 0.183 

C5     1 -0.120 0.219 -0.063 0.051 -0.053 

C6      1 0.151 -0.093 -0.122 0.589 

C7       1 0.338 0.026 0.090 

C8        1 0.076 -0.175 

C9         1 -0.202 

Y1          1 
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