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Abstract - In traditional finite element analysis (FEA) of cable-
stayed bridges, each stay cable is often represented by a single
tension-only truss element with reduced stiffness to consider sag
effects. Although this simplification is computationally efficient,
the accuracy may not be sufficient to ensure reliable
performance in cable Structural Health Monitoring (SHM). This
study examines the influence of cable modeling strategies,
particularly element discretization levels (1, 10, 50, and 100
elements per cable) and sag representation using Ernst’s
effective modulus, on the dynamic characteristics of the
Bhumibol Bridge in Thailand. Field-measured vibration data
were employed to validate the numerical model in terms of
modal frequencies and mode shapes. The results indicate that
increasing the number of cable elements slightly raises the
natural frequencies and enables more precise simulation of
cable responses., while frequencies remain nearly constant
beyond 50 elements. Incorporating Ernst’s effective modulus
reduces the frequencies of both girder-dominated and cable-
dominated modes, enhancing agreement between analytical
and experimental results. Additionally, the inclusion of
precamber slightly decreases the overall modal frequencies.
These findings highlight the importance of proper cable
discretization and sag representation to ensure accurate
dynamic simulations, which are essential for SHM and digital-
twin applications in long-span bridges.

Keywords: Cable-stayed bridge, finite element analysis,
element discretization, precamber, Ernst effective
modulus

© Copyright 2025 Authors - This is an Open Access article
published under the Creative Commons Attribution
License terms (http://creativecommons.org/licenses/by/3.0).
Unrestricted use, distribution, and reproduction in any medium
are permitted, provided the original work is properly cited.

1. Introduction

Date Received: 2025-05-26
Date Revised: 2025-10-10

Date Accepted: 2025-11-14
Date Published: 2025-12-22

216

In recent decades, many civil infrastructures such
as bridges, highways, and buildings have been subjected
to increasing demands caused by traffic growth,
environmental actions, and aging-related deterioration.
Numerous bridges constructed more than half a century
ago are now approaching or exceeding their design
lifespans, raising growing concerns about structural
safety, serviceability, and maintenance efficiency. These
challenges highlight the urgent need for reliable and
cost-effective assessment approaches to ensure the long-
term performance and sustainability of critical
infrastructure systems.

Structural Health Monitoring (SHM) integrates sensing
technologies with computational modeling to evaluate and
predict structural conditions in real time. Only sensing-based
SHM faces challenges such as high cost, limited coverage, and
incomplete data. Integrating SHM with the Finite Element
Method (FEM) addresses these issues by providing a flexible
numerical platform for simulating stress, deformation, and
dynamicresponses under various conditions. Through virtual
sensing, FEM enables estimation of unmeasured responses,
supporting digital-twin development for continuous
monitoring and predictive maintenance.

In the finite element modeling of cable-stayed
bridges, stay cables are typically idealized as single
tension-only truss elements with reduced stiffness to
account for sag effects. Although this approach offers
simplicity and computational efficiency, it may be
insufficient for model-based SHM, where accurate
reproduction of the real dynamic behavior is essential to
reliably assess current structural conditions and detect
hidden damages [1]. Simplified modeling can cause
discrepancies in the predicted cable forces, self-
equilibrated shapes, and modal characteristics, reducing
the fidelity of model validation with field data. Caetano



[3] have investigated cable modeling schemes and sag
formulations, but their findings were primarily based on
numerical or laboratory studies without full-scale field
validation.

Although many studies have explored the dynamic
behavior of cable-stayed bridges, the combined effects of
cable discretization and sag representation on the global
modal characteristics of full-scale structures remain
insufficiently quantified. Previous research, such as that
by Caetano [3], mainly focused on simplified or small-
scale models, leaving uncertainty about their influence
on real bridge responses. To address this gap, this study
investigates how cable discretization and sag
representation affect the dynamic behavior of the full-
scale Bhumibol Bridge I in Bangkok, Thailand. Field-
measured vibration data are used for model validation,
comparing finite element models with different cable
element divisions and Ernst’s effective modulus. The
results provide practical guidance for reliable FEM
construction in SHM and digital-twin applications.

2. Basic theories and principles
2.1 Dynamic Behavior of Cable-Stayed Bridges

The dynamic behavior of cable-stayed bridges is
governed by the complex interaction among three primary
structural components: the deck, pylons(towers), and stay
cables. The stay cables, serving as the main load-carrying
members, transfer forces between the deck and pylons and
play a dominant role in determining the global stiffness and
vibration characteristics of the entire structure [2], [3].
Owing to their geometric slenderness, low damping, and
high flexibility, cable-stayed bridges exhibit distinct
dynamic responses that differ substantially from those of
conventional beam or truss systems [4], [5]. Under
dynamic excitations such as wind, traffic, or seismic
loading, these bridges experience coupled motions that
include vertical, lateral, and torsional vibrations of the deck,
longitudinal movements of the pylons, and both in-plane
and out-of-plane vibrations of the stay cables [6], [7].

These responses are highly nonlinear, mainly due
to geometric nonlinearity caused by cable sag and large
displacements, as well as material nonlinearity related to
variations in axial tension and stiffness [8]-[10]. Since
stay cables act as tension-only elements, their natural
frequencies are strongly influenced by the axial force,
self-weight, and unstrained length [11]. The vibration
modes of cable-stayed bridges can generally be classified
into three categories: [2] global modes representing the
collective motion of the deck, pylons, and cables; [3] local
cable modes dominated by the vibration of individual
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cables; and [4] hybrid modes that involve coupled
motions between global and local components [12], [13].

Previous analytical and experimental investigations
have emphasized that the coupling between cable vibration
and the deck-pylon system significantly affects the overall
dynamic behavior. Abdel-Ghaffar and Khalifa [14] showed
that dividing each stay cable into multiple finite elements
reveals numerous pure cable modes interacting with the
deck and tower, resulting in complex hybrid responses
that simplified single-element models cannot capture.
Likewise, Caetano [3], through field and laboratory
studies on the on a cable-stayed bridge in Spain, found
that multi-element cable modeling generates a denser
vibration spectrum with closely spaced global, local, and
hybrid modes.

Accurate representation of these coupled dynamic
characteristics is therefore essential for understanding
the actual structural behavior of long-span cable-stayed
bridges. Such understanding forms the analytical
foundation for effective vibration analysis, design
improvement, and SHM. of these large-scale systems.
2.2 Cable Modelling Approaches

The accuracy of finite element (FE) analysis for
cable-stayed bridges largely depends on how stay cables
are represented. As the main load-carrying and
vibration-controlling components, stay cables strongly
affect both global and local dynamic responses. Two
principal modeling systems are generally adopted: the
One-Element Cable System (OECS) and the Multi-
Element Cable System (MECS) [3], [14].

In the OECS, each stay cable is modeled as a single
truss element connecting the deck and pylon. The
simplest configuration, referred to as the one-element
linear model, assumes a straight cable with constant
axial tension, neglecting self-weight and geometric sag
effects. It employs the material’s full elastic modulus and
provides high computational efficiency but often
overestimates stiffness and natural frequencies, making
it less suitable for detailed vibration studies.

A refined form of the OECS incorporates sag-
induced flexibility through an equivalent elastic modulus
derived from the Ernst formula [8]. This approach
reduces the cable stiffness as a nonlinear function of its
self-weight, span length, and horizontal tension, yielding
a parabolic approximation of the sag curve. Studies such
as Caetano [3] have shown that this refinement slightly
lowers the predicted natural frequencies and improves
agreement with measured modal data, providing a good
balance between accuracy and efficiency.



The MECS, in contrast, divides each stay cable into
multiple truss elements with distributed self-weight.
This multi-node configuration enables the FE model to
reproduce the catenary-shaped profile and to capture
local cable vibrations as well as their coupling with deck
and pylon motions. Abdel-Ghaffar and Khalifa [14]
demonstrated that this discretization reveals numerous
independent cable modes and complex coupled
responses that simplified single-element systems cannot
reproduce.

2.3 Effect of Sagging on Natural Frequency

In cable-stayed bridges, the sagging effect reduces
the effective axial stiffness of stay cables, influencing
both the global stiffness and dynamic characteristics of
the structure. To represent this effect without resorting
to nonlinear catenary modeling, Ernst [8] proposed an
equivalent elasticity modulus that accounts for the
reduction in stiffness due to sag. This approach has been
widely adopted in practical bridge analyses for its
balance between computational efficiency and accuracy.
The equivalent modulus of elasticity is expressed as Eq.1

E
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Where: E, is elastic modulus of the cable

material, y, is the weight per unit volume of the
cable,L, is the horizontal projection length of cable and

o, is initial stress in the cable due to the load increment

The reduction in the effective axial stiffness leads to
a decrease in the natural frequencies of both individual
cables and the overall bridge system. The magnitude of this
reduction depends on the cable’s self-weight, tension level,
and span length. For short, highly tensioned cables, the
sagging effect is typically negligible; however, for long or
lightly tensioned cables, it becomes significant and must be
considered in dynamic analysis [2],[16].

2.5 Analysis of Cable Tension

The vibration and tension characteristics of stay
cables play a fundamental role in defining the overall
dynamic behavior of cable-stayed bridges. As long,
slender, and tension-only members with negligible
bending stiffness, stay cables can be reasonably modeled
as taut strings subjected to distributed self-weight and
axial tension [16]. The dynamic equilibrium of an
infinitesimal cable segment leads to a one-dimensional

218

wave equation that relates transverse vibration to axial
force and mass per unit length.

Assuming small-angle motion, the relationship
between cable tension and its natural frequency is
derived Eq. 2 as:

T

u

n

fo= oL (2)

where f,, is the natural frequency at vibration mode
n, L is the cable length, T is the cable tension, and
u is the mass per unit length.

From this expression, the cable tension can be
estimated based on Eq. 3.:
T = 4ul?f? (3)
for the fundamental mode (n=1)

Expressing 4 = pA, where p is the material density and
A is the cable cross-sectional area, gives in Eq. 4
T = 4pAL2f? 4)

This classical relationship forms the theoretical
foundation of vibration-based cable-tension identification
techniques widely used in SHM [2], [3]. By measuring the
fundamental frequency f; from field vibration data typically
obtained using accelerometers or Fiber Bragg Grating (FBG)
sensors [21] the in-situ cable tension can be estimated
indirectly without the need for load cells.

Although this vibration-based method is simple and
computationally efficient, several studies [18] have reported
that neglecting bending stiffness, boundary constraints, and
environmental influences may introduce errors of up to 10
%. To overcome these limitations, advanced identification
algorithms have been developed. Li et al. [18] proposed an
Extended Kalman Filter (EKF)-based method for estimating
time-varying cable tension from measured accelerations,
achieving high robustness in numerical and laboratory tests.
Similarly, Yang et al. [20] introduced a Blind Source
Separation (BSS) technique capable of extracting
instantaneous cable-tension variations from mixed ambient
vibration data with improved accuracy.

In the present study, the fundamental frequency-
tension relationship is employed to estimate the in-situ
tension of stay cables in the Bhumibol Bridge I based on
field-measured vibration data. The derived tension values
are incorporated into the finite element model to examine
their influence on global stiffness, modal frequencies, and



the interaction between cable tension and sag effects,
contributing to a more reliable model-based SHM
framework for long-span cable-stayed bridges.

3. Methodology and Finite Element Model
Development
3.1 Research Framework

The research framework is divided into three phases,
as illustrated in Figure 1, Phase A for model construction,
Phase B for field measurement, and Phase C for validation and
analysis. This process provides a systematic approach to
develop, calibrate, and validate the FEM of the Bhumibol
Bridge .

Phase C:

Phase B : Field Measurement

Phase A : Model Construction

1.5elected Case Study :
Bhumibol Bridge
L]
2.Develop FEM :
Model from original drawings

Validation & Analysis

5. Free Vibration Test :
Measure natural frequencies an
cables , girders and estimate
cable tensile stress

6. Validate Vibration
Compare mode! frequencies

with accelerometer data on
cable and girders

¥
3. Cable modeling
= Single tension-only element per
cable (simplified model)
«  Refined models with 10, 50, and
100 elements per cable
¥

4. Adjust E for sag effects and precamber :

Apply Ernst based effective modulus for the represent
stiffness reduction due to cable sag and include
precamber in the deck geometry

Figure 1. Research framework: (A) Model Construction, (B)
Field Measurement, and (C) Validation, Analysis

A detailed finite element model (FEM) of the Bhumibol
Bridge I was developed from design drawings, focusing on
stay cables that govern global stiffness and vibration behavior.
The baseline model used single truss elements per cable,
while refined models with 10, 50, and 100 elements captured
curvature and higher vibration modes. The Ernst effective
modulus represented effect and precamber was incorporated
into the deck geometry to reflect the initial cambered
configuration during construction. Free vibration tests under
ambient traffic and wind provided field data for calibration.
The final FEM was validated against measured natural
frequencies, mode shapes, and static responses.

3.2 Overview of the Target Bridge

The target bridge of this study is the Bhumibol
Bridge I, a cable-stayed bridge crossing the Chao Phraya
River in Bangkok, Thailand (Figure 2). Opened in
September 2006, it consists of a 326 m composite main
span and 125 m post-tensioned concrete box girder side
spans. The deck is supported by two 152 m-high diamond-
shaped reinforced concrete towers and four side-span
piers. Fixed connections between the deck, towers, and
piers are made of homogeneously stressed concrete, with
expansion joints provided at both ends of the side spans.
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Figure 2. Overview of the Bhumibol Bridge I

3.3 Material Properties and Cable Modeling

The finite element model of the Bhumibol Bridge I uses
structural steel for the girders and stay cables, and reinforced
concrete for the pylons and deck, as summarized in Tables 1
and 2.

Table 1. Gerneral Material Properties

Name Property Value Unit
Girders Young's 2.10 x 10® | kN/m?2
(Structural | modulus
Steel) Density 78.50 kN/m3
Poisson’s ratio | 0.3 -
Pylons & | Young’s 3.17 x 107 | KN/m?
deck modulus
(Reinforce | Density 23.63 kN/m3
Concrete) | Poisson’s ratio | 0.2 -
Asphalt Density 24.50 kN/m3
Table 2. Cable Properties
Property Value Unit
Diameter 0.00157 m
Tensile strength 1.86 x 106 kN/m2
Cross-sectional area 1.50 x 10-4 m?
Mass per meter 0.001147 kN/m
Modulus of elasticity | 1.95 x 108 kN/m?




In the finite element model, stay cables were modeled
as tension-only elements. Eight scenarios were analyzed to
examine the effects of discretization and sag (Table 3). Two
approaches were used: the linear elastic modulus (Eg)
without sag correction and the Ernst effective modulus (E;pst)
accounting for sag-induced stiffness reduction (Eq. 1). Each
cable was idealized as a straight line between anchorage
points (see Figure 3).

Table 3. Cable Modeling Scenarios

Case Modulus of No. of Elements
Elasticity

1 Ey(100%) 1 element

(Base model) (original)

2 Ey(100%) 10 elements

3 Ey(100%) 50 elements

4 Ey(100%) 100 elements

5 Erpst 1 element

6 Epnst 10 elements

7 Erpst 50 elements

8 Erpst 100 elements

(a) 1- element cable

N Y

(b) 10-el

(c) 50- element cable

MM

(d) 100- element cable

ement cable

Figure 3. Cable modeling configurations for different
discretization levels and modulus types

3.4 Instrumentation and Sensor Layout

Field measurements on the Bhumibol Bridge were
conducted in two phases: the initial campaign in May 2014
and an upgraded system in September 2025, as shown in
Figures 4 and 5. In 2014, a monitoring system was installed to
collect baseline dynamic data. Accelerometers (AC, 50 Hz) on
the main girder and the longest stay cables recorded vibration
responses, while temperature sensors (TS) and displacement
transducers (DP) measured environmental effects and global
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deflections for initial modal identification and model
validation.

The 2025 campaign introduces an enhanced SHM
system. Selected stay cables, including eight in the back span,
are equipped with high-sensitivity accelerometers operating
at 100 Hz to capture detailed vibration responses for
advanced dynamic analysis and model validation.

o

© Displacement transducer (DP)

sensor (TS)

Figure 4. Sensor layout of the 2014 field measurement,
showing accelerometers (AC), temperature sensors (TS), and
displacement transducers (DP) on the girder and cables.

SideView

@ Accelerometer (AC)

Figure 5. layout for the 2025 campaign, featuring
accelerometers (AC)

3.6 Resonant Frequencies and Mode Shapes

The resonant frequencies were identified from
peaks in the power spectral density (PSD) of the deck’s
vertical acceleration (Figure 6), computed from five-
minute measurement segments (15,000 data points
each). The identified peaks corresponding to the first
four resonant frequencies are illustrated in Figure 7.

Figure 6. Locations of accelerometers (AC-101, AC-102, and
AC-103) installed on the Bhumibol Bridge deck for vibration
measurements
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Figure 7. Summary of power spectral density (PSD) of vertical
deck acceleration, showing the first four resonant frequencies

4 .Finite Element Analysis
4.1 Modal Analysis of the Initial FE Model

The finite element model of the Bhumibol Bridge I
was developed from original design drawings in MIDAS
Civil. Modal analysis was performed to determine
natural frequencies and mode shapes, with stay cables
modeled as single tension-only elements. Boundary
conditions assumed fixed pylons, rigid deck connections,
and pinned cable ends. The first four FE mode shapes are
presented in Figure 8, and the comparison with field-
measured frequencies is summarized in Table 4.

Table 4 Natural frequencies comparison between FE
model and field measurement

Model FE Model | Field Different
Measurement | (%)
(Hz)
1st 0.46482 | 0.4272 8.81%
2nd 0.87063 | 0.8301 4.88%
3rd 1.12337 | 1.0742 4.58%
4th 1.35933 | 1.3306 2.11%

o AC-2 o
AC-1 AC-3

(a) 1stpeak (0.46482 Hz)

P

AC-2

(b) 2ndpeak (0.870631 Hz)

(c) 3rdpeak (1.12337 Hz)

( |
(T el T

(d) 4t peak (1.35933 Hz)

Figure 8. Identified mode shapes of the Bhumibol
Bridge corresponding to the first four peak frequencies.

4.2 Cable Modeling Scenarios

To improve accuracy, refined models with 10, 50,
and 100 elements per cable were developed to account for
distributed self-weight and realistic deformation behavior.
The results show a consistent trend across the first four
bending modes.

At the first mode, the results show that increasing the
number of elements enhances the representation of cable
curvature and local flexibility. However, the calculated
frequency slightly increases when the cable is divided, and
shows almost no change between 50 and 100 elements, as
illustrated in Figure 9.

(a) 1 element cable divided, f = 0.46482 Hz

_-
= - S ,
= z — A
! \6—‘% N

(b) 10 element cable divided, f= 0.465787 Hz

(c) 50 element cable divided, f = 0.465804 Hz

//_
=

(d) 100 element cable divided, f = 0.465802 Hz
Figure 9. Comparison of the first mode shapes with different
cable element divisions
The frequency results for different cable modelling
scenarios compared with field measurements for the 1st-
4th modes, the calculated frequencies slightly increase
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when the cable is divided, and show almost no change
between 50 and 100 elements, as shown in Table 5.

Table 5 Comparison of field-measured and FE-calculated
natural frequencies for different cable element divisions

Mode | Field FE Analysis Result (EO0): f(Hz) ‘
(Hz) 1 10 50 100
element element | element | element
st 0.4272 0.4648 0.4657 0.4658 0.4658
2nd 0.8301 0.8706 0.8753 0.8757 0.8757
3rd 1.0742 1.1233 1.1282 1.1277 1.1258
4th 1.3306 1.3593 1.3591 1.3613 1.3614

The trend of frequencies shows a slight increase
beyond 10 elements and remains nearly unchanged after 50
to 100 elements, as shown in Figure 10. This stabilization
reflects numerical convergence, where additional
discretization no longer affects the cable’s stiffness
representation. Beyond this point, the finite element mesh
becomes sufficiently refined to capture the cable’s geometric
nonlinearity and self-weight effects, resulting in consistent
natural frequencies regardless of further element division.

B Field measurement
W 1 Element

[ 10 Element

[ 50 Element

I 100 Element

Frequency (Hz)

0
0
500
400
0
0
0

200

Mode No.
Figure 10. Comparlson of natural frequenc1es for different

cable element divisions

The slight increase in natural frequencies with
finer cable element division occurs because multi-
element models more accurately capture the cable’s
curvature and flexibility, leading to a more realistic
stiffness distribution. Beyond about 50 elements,
the frequencies converge as the mesh becomes
sufficiently refined to represent the cable’s self-
weight and geometric nonlinearity, resulting in
negligible changes in overall stiffness and dynamic
response.

4.3 Equivalent Modulus by Ernst Formula

222

The stay cables were modeled with a nominal
modulus of Eg=1.95x10* N/m?.Considering sag effects,
the equivalent modulus was derived from the Ernst
formula (Eq. 3), accounting for self-weight, length, and
initial tension. As shown in Figure. 11-12, the equivalent
values are up to 5% lower, providing a more realistic
dynamic representation.

The reduction in equivalent modulus becomes
more pronounced in longer cables, as the increased sag
due to self-weight reduces the effective axial stiffness.
This behavior reflects the geometric nonlinearity of the
cable, where a portion of the tensile force is consumed to
support its own weight rather than resisting dynamic
deformation. Consequently, longer and more flexible
cables exhibit slightly lower equivalent stiffness and
natural frequencies compared to shorter ones.

Comparison of Eo and Ernst at Each Cable
E0=1.95x 10''N/m?

TRET

7 1013 16 1922 2 43740 43 46 4
lErsr’lt

Figure 11. Comparison of nommal elastic modulus (Eo) and
equivalent modulus (Emst) for each cable, showing the
reduction in effective stiffness due to the sagging effect

76 88 9
m trsu

Figure 12. Proportional difference between Emst and Eo,
illustrating reductions of up to 5% for some cables

us of Easticity (n/m"2)

. 76 79 82 85 88 9194

Proportional Difference Between Ernst and Eo Modulus

(EO-Ernst)

(E0)

X 100

.Hll

43 46 49
L b\ Num er

1|||| mlm‘ ‘|||\|

7 1013 16 19 22

The decrease in equivalent modulus with longer
cables occurs because greater sag consumes part of the
tensile force to support self-weight, reducing effective
axial stiffness. This geometric nonlinearity leads to
slightly lower stiffness and natural frequencies,
indicating that the Ernst-modulus approach realistically
represents stiffness variation among cables of different
lengths.

4.4 Comparison Emst with Constant Eo Assumption
To evaluate the influence of the sag effect, the results from
the Ernst-modified modulus (Ernst) were compared with those
obtained using the constant elastic modulus (Eq). As shown in
Figure 13, the use of the Ernst modulus slightly lowers the



calculated natural frequencies compared to E,, reflecting the
stiffness reduction due to cable sag.

1st Bending frequenc\ \ S Cable element division
= Field Measurment ™ Ernst

- 04
z
=03
T
=02
z
= 0.1
0

1 Element 10 Element 50 Element 100 Element

divide element

(a) 1stbending mode vs. cable element division

2nd Bending frequency VS Cable element division

B Field Measurment M Ernst

1 Element 10 Element 50 Element 100 Element

frequency (Hz)
SOOoooo0oS
O 1D L) = N O\~ 00 \D =

divide element

(b) 2rd bending mode vs. cable element division

3rd Bending frequency VS Cable element division
mField Measurment ™ Ernst

1.2
1
£os
)
£ 06
=
g 04
0.2
0
1 Element 10 Element 50 Element 100 Element
divide element
(c) 3 bending mode vs. cable element division
4th Bending frequency VS Cable element division
m Field Measurment ®mErnst = EQ
1.6
14
=12
g
= 1
208
% 0.6
=04
0.2
0

1 Element 10 Element 50 Element 100 Element

divide element

(d) 4*bending mode vs. cable element division
Figure 13 Comparison of field-measured and FE natural
frequencies using the nominal modulus (Eo) and Ernst-modified
modulus for different cable divisions.
The slight reduction in natural frequencies using the
Ernst-modified modulus reflects the sag-induced stiffness
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reduction of the cable system. This results in a more
realistic global stiffness, improving the agreement of the
main structural bending modes with the field-measured
frequencies compared to the constant E; assumption,
thereby enhancing the accuracy of the dynamic analysis.

4.5 Cable Frequency Measurement and Tracking
Cable Modeling

Cable frequency measurements were conducted on
selected stay cables of the Bhumibol Bridge I (Figure 4 and 5)
Accelerometers were installed on short, middle, and long
cables in the back span and the longest cable in the main span
to record ambient vibrations. The identified FFT peak
frequencies, used for FE model validation, are summarized in
Table 6

Table 6 Representative FFT peak frequencies of
selected stay cables

Cable No. Type of 15t Mode 2nd Mode
Cable (Hz) (Hz)
MN4B1E Short 1.860 3.721
MN4B6E Medium 1.160 2.323
MN4B11E | Long 0.781 1.546
MN3B1W | Short 1.873 3.691
MN3B6W | Medium 1.219 2.434
MN3B11W | Long 0.786 1.556
MN4M12W | Longest 0.621 0.887

For tracking the short cable shows consistent mode
shape across all cases, with frequencies slightly increasing as
element division refines. The single-element model fails to
capture the measured behaviour or realistic mode shape as
shown in Figure 14.

m 1=1.818324Hz f= 1.807049Hz

Measured vs Modeled Frequency at Ernst

[ — 15 1873
\ 6 1.807049 1.814208 1.81443
sim

&
| & ~

[ s0ciemen: [ECRRILELIY [ 100 clement [EEEIEELIT

10element 50element 100element field

m field measurment frequency model

Figure 14. Cable shapes and frequencies of a short stay cable
at the first peak mode with different element divisions,
compared with field measurement (1.873 Hz).

A similar trend is observed for the first modal
frequency of cable where the overall frequency
decreases with increasing cable length. Increasing the



number of cable elements slightly raises the frequencies
in both girder- and cable-dominated modes. However,
for the second mode of long stay cables, the frequencies
remain nearly constant beyond 50 elements, while the
mode shape patterns become smoother.

These results show that finer cable discretization
improves modal accuracy by better representing
curvature and flexibility. The slight frequency increase
reflects reduced artificial stiffness in coarse models, while
convergence beyond 50 elements indicates sufficient

refinement to capture the cable’s true dynamic behavior.

4.6 Effect of Precamber

The influence of precamber on cable forces was
examined using FE models with and without precamber
based on the Ernst-modified modulus. As shown in Figures
15-16, the overall force distribution remains nearly
identical, with differences within +0.2% and slightly higher
sensitivity in the back- and main-span regions. Although
minor, precamber slightly modifies the tension distribution,
which may affect the bridge’s vibration characteristics.

Tension force in Cable
S S ) N
G & & >
e & & @@9 \%—\"

I
& $ &
o @@ @a & Ji &

4500

4000
g 3500
= 3000
g

£ 2500
= 2000
B 1500
1000
500
]

e

e

&

W Non precamber W Precambe

Fol

Tensiol

o
S &
< & &

Cable Name

Figure 15 Tension force distribution in cables with and without
precamber using the Ernst-modified modulus.

{Nom-pre) 100 Tension Force Difference due to Sag Effect

(Non) (Nonprecam - precamber 1 Element) vs Cable number

. o 0.2% | -
2 o Afit N 8
: ""'"""‘-W-\J‘l"a"llk 'ﬁ Py jq&' f‘w
f o A% ./
‘ iin span prain Spen
0.2% 0.2%

Figure 16 Difference in cable forces between non-precamber
and precamber cases (+0.2%).

The effect of precamber on modal responses was
evaluated using the Ernst-modified modulus with 100 cable
elements. As shown in Table 7, the natural frequencies
remain close to field data, with precamber slightly reducing
frequencies in girder-related modes (1st and 2nd). The
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mode shapes also align well with field observations,
indicating that precamber improves the accuracy of the
predicted dynamic behavior

The slight frequency reduction in girder-related
modes results from precamber altering the initial geometry
and stiffness distribution, slightly lowering global rigidity.
This adjustment produces frequencies closer to field data,
confirming that including precamber improves the realism
of the dynamic response prediction.

Table 7 Comparison of field and FE frequencies with/without
precamber (Ernst modulus, 100 elements)

Mode | f(Hz) Ernst 100 element Ernst 100 element
Non precamber precamber
Field f(Hz) Different f(Hz) Different
Measur | Ernst from filed Ernst from filed
ement | model (%) model (%)
1st 0.4272 | 0.4617 8.09% 0.4614 8.01%
2nd 0.8301 | 0.8714 4.98% 0.8709 4.92%
3rd 1.0742 | 1.1258 4.81% 1.1264 4.87%
4th 1.3306 | 1.3598 2.20% 1.3627 2.41%

4.7 Validation of FE Model with Field Data

The comparison between field measurements and
modeling results in Table 8 shows that when using 100
elements per cable, the natural frequency gradually
decreases as the cable length increases. The short cable
in the back span shows a frequency difference of about
3-5% between the numerical and measured results. The
middle cables show the largest difference (15-16%),
while for the long and longest cables, the differences
decrease to 7% and 1%, respectively. Moreover, when
considering the first peak mode (single curve), the
overall frequency trend consistently decreases with
increasing cable length, showing a clear relationship
between cable length and vibration characteristics.

The decreasing frequency trend with increasing
cable length occurs because longer cables experience
greater sag and lower axial stiffness. Short cables remain
taut and stiffer, producing higher frequencies and
smaller discrepancies. The larger differences in middle
cables, where the modeled frequencies are lower than
the measured values, may be due to underestimation of
boundary stiffness or pretension, making these cables
less sensitive to the assumed modeling conditions.



Table 8 Comparison of field measurements and modeling
results for cable vibration frequencies
(100-element cable model)

Cable No. Type of | Field FE Different
Cable measure Modeling from field
ment (Hz) measure
f(Hz) ment
(%)
MN4B1E Short 1.860 1.7728 5
MN3B1W Short 1.873 1.8144 3
MN4B6E Medium | 1.166 0.9884 15
MN3B6W Medium | 1.219 1.0294 16
MN4B11E Long 0.781 0.7123 9
MN3B11W | Long 0.786 0.7265 8
MN4M12W | Longest | 0.621 0.6263 1

5. Conclusion

This research clarifies a finite element modeling
framework that improves the accuracy of cable dynamic
simulations and enhances the reliability of global structural
response predictions. The updated cable geometries
developed under various modeling assumptions show that
element discretization, realistic stiffness modeling with sag
effects, and the consideration of precamber significantly
influence the results. In girder modes, using cables with
more than 10 elements slightly increases the frequencies,
while 50-100 elements yield stable values. The stabilization
beyond 50 elements indicates numerical convergence,
where the mesh is sufficiently refined to represent cable
stiffness and sag effects accurately. In cable modes, a single-
element cable cannot reproduce field data, whereas multiple
elements generate smoother deformation shapes and
enable the identification of individual vibration modes. The
Ernst-modified modulus improves the agreement with field
measurements, and the inclusion of precamber slightly
reduces the frequencies while enhancing the overall fit.
Overall, these findings provide a more realistic
representation of bridge behavior and valuable insights for
refining finite element models and advancing structural
health monitoring of large-scale cable-stayed bridges.
In future work, the modal energy of each structural
component will be investigated to quantify the contribution
of the deck, pylons, and stay cables to the global vibration
characteristics of the bridge.
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