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Abstract - In traditional finite element analysis (FEA) of cable-
stayed bridges, each stay cable is often represented by a single 
tension-only truss element with reduced stiffness to consider sag 
effects. Although this simplification is computationally efficient, 
the accuracy may not be sufficient to ensure reliable 
performance in cable Structural Health Monitoring (SHM). This 
study examines the influence of cable modeling strategies, 
particularly element discretization levels (1, 10, 50, and 100 
elements per cable) and sag representation using Ernst’s 
effective modulus, on the dynamic characteristics of the 
Bhumibol Bridge in Thailand. Field-measured vibration data 
were employed to validate the numerical model in terms of 
modal frequencies and mode shapes. The results indicate that 
increasing the number of cable elements slightly raises the 
natural frequencies and enables more precise simulation of 
cable responses., while frequencies remain nearly constant 
beyond 50 elements. Incorporating Ernst’s effective modulus 
reduces the frequencies of both girder-dominated and cable-
dominated modes, enhancing agreement between analytical 
and experimental results. Additionally, the inclusion of 
precamber slightly decreases the overall modal frequencies. 
These findings highlight the importance of proper cable 
discretization and sag representation to ensure accurate 
dynamic simulations, which are essential for SHM and digital-
twin applications in long-span bridges. 

 
Keywords: Cable-stayed bridge, finite element analysis, 
element discretization, precamber, Ernst effective 
modulus 
 
© Copyright 2025 Authors - This is an Open Access article 
published under the Creative Commons Attribution               
License terms (http://creativecommons.org/licenses/by/3.0). 
Unrestricted use, distribution, and reproduction in any medium 
are permitted, provided the original work is properly cited. 

 

1. Introduction 

In recent decades, many civil infrastructures such 
as bridges, highways, and buildings have been subjected 
to increasing demands caused by traffic growth, 
environmental actions, and aging-related deterioration. 
Numerous bridges constructed more than half a century 
ago are now approaching or exceeding their design 
lifespans, raising growing concerns about structural 
safety, serviceability, and maintenance efficiency. These 
challenges highlight the urgent need for reliable and 
cost-effective assessment approaches to ensure the long-
term performance and sustainability of critical 
infrastructure systems. 

Structural Health Monitoring (SHM) integrates sensing 
technologies with computational modeling to evaluate and 
predict structural conditions in real time.  Only sensing-based 
SHM faces challenges such as high cost, limited coverage, and 
incomplete data. Integrating SHM with the Finite Element 
Method (FEM) addresses these issues by providing a flexible 
numerical platform for simulating stress, deformation, and 
dynamic responses under various conditions. Through virtual 
sensing, FEM enables estimation of unmeasured responses, 
supporting digital-twin development for continuous 
monitoring and predictive maintenance. 

In the finite element modeling of cable-stayed 
bridges, stay cables are typically idealized as single 
tension-only truss elements with reduced stiffness to 
account for sag effects. Although this approach offers 
simplicity and computational efficiency, it may be 
insufficient for model-based SHM, where accurate 
reproduction of the real dynamic behavior is essential to 
reliably assess current structural conditions and detect 
hidden damages [1]. Simplified modeling can cause 
discrepancies in the predicted cable forces, self-
equilibrated shapes, and modal characteristics, reducing 
the fidelity of model validation with field data. Caetano 
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[3] have investigated cable modeling schemes and sag 
formulations, but their findings were primarily based on 
numerical or laboratory studies without full-scale field 
validation. 

Although many studies have explored the dynamic 
behavior of cable-stayed bridges, the combined effects of 
cable discretization and sag representation on the global 
modal characteristics of full-scale structures remain 
insufficiently quantified. Previous research, such as that 
by Caetano [3], mainly focused on simplified or small-
scale models, leaving uncertainty about their influence 
on real bridge responses. To address this gap, this study 
investigates how cable discretization and sag 
representation affect the dynamic behavior of the full-
scale Bhumibol Bridge I in Bangkok, Thailand. Field-
measured vibration data are used for model validation, 
comparing finite element models with different cable 
element divisions and Ernst’s effective modulus. The 
results provide practical guidance for reliable FEM 
construction in SHM and digital-twin applications. 

 

2. Basic theories and principles 
2.1 Dynamic Behavior of Cable-Stayed Bridges 

The dynamic behavior of cable-stayed bridges is 
governed by the complex interaction among three primary 
structural components: the deck, pylons(towers), and stay 
cables. The stay cables, serving as the main load-carrying 
members, transfer forces between the deck and pylons and 
play a dominant role in determining the global stiffness and 
vibration characteristics of the entire structure [2], [3]. 
Owing to their geometric slenderness, low damping, and 
high flexibility, cable-stayed bridges exhibit distinct 
dynamic responses that differ substantially from those of 
conventional beam or truss systems [4], [5]. Under 
dynamic excitations such as wind, traffic, or seismic 
loading, these bridges experience coupled motions that 
include vertical, lateral, and torsional vibrations of the deck, 
longitudinal movements of the pylons, and both in-plane 
and out-of-plane vibrations of the stay cables [6], [7]. 

These responses are highly nonlinear, mainly due 
to geometric nonlinearity caused by cable sag and large 
displacements, as well as material nonlinearity related to 
variations in axial tension and stiffness [8]–[10]. Since 
stay cables act as tension-only elements, their natural 
frequencies are strongly influenced by the axial force, 
self-weight, and unstrained length [11]. The vibration 
modes of cable-stayed bridges can generally be classified 
into three categories: [2] global modes representing the 
collective motion of the deck, pylons, and cables; [3] local 
cable modes dominated by the vibration of individual 

cables; and [4] hybrid modes that involve coupled 
motions between global and local components [12], [13]. 

Previous analytical and experimental investigations 
have emphasized that the coupling between cable vibration 
and the deck–pylon system significantly affects the overall 
dynamic behavior. Abdel-Ghaffar and Khalifa [14] showed 
that dividing each stay cable into multiple finite elements 
reveals numerous pure cable modes interacting with the 
deck and tower, resulting in complex hybrid responses 
that simplified single-element models cannot capture. 
Likewise, Caetano [3], through field and laboratory 
studies on the on a cable-stayed bridge in Spain, found 
that multi-element cable modeling generates a denser 
vibration spectrum with closely spaced global, local, and 
hybrid modes. 

Accurate representation of these coupled dynamic 
characteristics is therefore essential for understanding 
the actual structural behavior of long-span cable-stayed 
bridges. Such understanding forms the analytical 
foundation for effective vibration analysis, design 
improvement, and SHM. of these large-scale systems. 
2.2 Cable Modelling Approaches 

The accuracy of finite element (FE) analysis for 
cable-stayed bridges largely depends on how stay cables 
are represented. As the main load-carrying and 
vibration-controlling components, stay cables strongly 
affect both global and local dynamic responses. Two 
principal modeling systems are generally adopted: the 
One-Element Cable System (OECS) and the Multi-
Element Cable System (MECS) [3], [14]. 

In the OECS, each stay cable is modeled as a single 
truss element connecting the deck and pylon. The 
simplest configuration, referred to as the one-element 
linear model, assumes a straight cable with constant 
axial tension, neglecting self-weight and geometric sag 
effects. It employs the material’s full elastic modulus and 
provides high computational efficiency but often 
overestimates stiffness and natural frequencies, making 
it less suitable for detailed vibration studies. 

A refined form of the OECS incorporates sag-
induced flexibility through an equivalent elastic modulus 
derived from the Ernst formula [8]. This approach 
reduces the cable stiffness as a nonlinear function of its 
self-weight, span length, and horizontal tension, yielding 
a parabolic approximation of the sag curve. Studies such 
as Caetano [3] have shown that this refinement slightly 
lowers the predicted natural frequencies and improves 
agreement with measured modal data, providing a good 
balance between accuracy and efficiency. 
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The MECS, in contrast, divides each stay cable into 
multiple truss elements with distributed self-weight. 
This multi-node configuration enables the FE model to 
reproduce the catenary-shaped profile and to capture 
local cable vibrations as well as their coupling with deck 
and pylon motions. Abdel-Ghaffar and Khalifa [14] 
demonstrated that this discretization reveals numerous 
independent cable modes and complex coupled 
responses that simplified single-element systems cannot 
reproduce. 

 
2.3 Effect of Sagging on Natural Frequency  

In cable-stayed bridges, the sagging effect reduces 
the effective axial stiffness of stay cables, influencing 
both the global stiffness and dynamic characteristics of 
the structure. To represent this effect without resorting 
to nonlinear catenary modeling, Ernst [8] proposed an 
equivalent elasticity modulus that accounts for the 
reduction in stiffness due to sag. This approach has been 
widely adopted in practical bridge analyses for its 
balance between computational efficiency and accuracy. 
The equivalent modulus of elasticity is expressed as Eq.1  

 

𝐸𝑟𝑠𝑛𝑡 = 
𝐸0

1+
𝛾2𝐿𝑥

2𝐸0

12𝜎0
3

               (1) 

 

Where: 𝐸0  is elastic modulus of the cable 

material, 𝛾0 is the weight per unit volume of the 

cable,𝐿𝑥 is the horizontal projection length of cable and 

𝜎0  is initial stress in the cable due to the load increment 
The reduction in the effective axial stiffness leads to 

a decrease in the natural frequencies of both individual 
cables and the overall bridge system. The magnitude of this 
reduction depends on the cable’s self-weight, tension level, 
and span length. For short, highly tensioned cables, the 
sagging effect is typically negligible; however, for long or 
lightly tensioned cables, it becomes significant and must be 
considered in dynamic analysis [2],[16]. 

 
2.5 Analysis of Cable Tension 

The vibration and tension characteristics of stay 
cables play a fundamental role in defining the overall 
dynamic behavior of cable-stayed bridges. As long, 
slender, and tension-only members with negligible 
bending stiffness, stay cables can be reasonably modeled 
as taut strings subjected to distributed self-weight and 
axial tension [16]. The dynamic equilibrium of an 
infinitesimal cable segment leads to a one-dimensional 

wave equation that relates transverse vibration to axial 
force and mass per unit length. 

Assuming small-angle motion, the relationship 
between cable tension and its natural frequency is 
derived Eq. 2 as: 

 

𝑓𝑛 =  
𝑛

2𝐿
√

𝑇

𝜇
       (2) 

 

where 𝑓𝑛 is the natural frequency at vibration mode  

𝑛, 𝐿 is the cable length, 𝑇 is the cable tension, and  
𝜇 is the mass per unit length. 

From this expression, the cable tension can be 
estimated based on Eq. 3.: 

 

𝑇 = 4𝜇𝐿2𝑓1
2       (3) 

 
for the fundamental mode (n=1) 

Expressing 𝜇 = 𝜌𝐴, where 𝜌 is the material density and 
A is the cable cross-sectional area, gives in Eq. 4 
 

𝑇 = 4𝜌𝐴𝐿2𝑓1
2       (4) 

 
This classical relationship forms the theoretical 

foundation of vibration-based cable-tension identification 
techniques widely used in SHM [2], [3]. By measuring the 
fundamental frequency 𝑓1 from field vibration data typically 
obtained using accelerometers or Fiber Bragg Grating (FBG) 
sensors [21] the in-situ cable tension can be estimated 
indirectly without the need for load cells. 

Although this vibration-based method is simple and 
computationally efficient, several studies [18] have reported 
that neglecting bending stiffness, boundary constraints, and 
environmental influences may introduce errors of up to 10 
%. To overcome these limitations, advanced identification 
algorithms have been developed. Li et al. [18] proposed an 
Extended Kalman Filter (EKF)-based method for estimating 
time-varying cable tension from measured accelerations, 
achieving high robustness in numerical and laboratory tests. 
Similarly, Yang et al. [20] introduced a Blind Source 
Separation (BSS) technique capable of extracting 
instantaneous cable-tension variations from mixed ambient 
vibration data with improved accuracy. 

In the present study, the fundamental frequency–
tension relationship is employed to estimate the in-situ 
tension of stay cables in the Bhumibol Bridge I based on 
field-measured vibration data. The derived tension values 
are incorporated into the finite element model to examine 
their influence on global stiffness, modal frequencies, and 
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the interaction between cable tension and sag effects, 
contributing to a more reliable model-based SHM 
framework for long-span cable-stayed bridges. 

 

3. Methodology and Finite Element Model 
Development 
3.1 Research Framework  

The research framework is divided into three phases, 
as illustrated in Figure 1, Phase A for model construction, 
Phase B for field measurement, and Phase C for validation and 
analysis. This process provides a systematic approach to 
develop, calibrate, and validate the FEM of the Bhumibol 
Bridge I. 

 

 

Figure 1. Research framework: (A) Model Construction, (B) 
Field Measurement, and (C) Validation, Analysis 

 
A detailed finite element model (FEM) of the Bhumibol 

Bridge I was developed from design drawings, focusing on 
stay cables that govern global stiffness and vibration behavior. 
The baseline model used single truss elements per cable, 
while refined models with 10, 50, and 100 elements captured 
curvature and higher vibration modes. The Ernst effective 
modulus represented effect and precamber was incorporated 
into the deck geometry to reflect the initial cambered 
configuration during construction. Free vibration tests under 
ambient traffic and wind provided field data for calibration. 
The final FEM was validated against measured natural 
frequencies, mode shapes, and static responses. 
3.2 Overview of the Target Bridge  

The target bridge of this study is the Bhumibol 
Bridge I, a cable-stayed bridge crossing the Chao Phraya 
River in Bangkok, Thailand (Figure 2). Opened in 
September 2006, it consists of a 326 m composite main 
span and 125 m post-tensioned concrete box girder side 
spans. The deck is supported by two 152 m-high diamond-
shaped reinforced concrete towers and four side-span 
piers. Fixed connections between the deck, towers, and 
piers are made of homogeneously stressed concrete, with 
expansion joints provided at both ends of the side spans. 

 

 
 
 

 
 
 
 
 

(a) General view of the Bhumibol Bridge I 

 

(b) Bridge dimensions 

Figure 2. Overview of the Bhumibol Bridge I 

3.3 Material Properties and Cable Modeling 
The finite element model of the Bhumibol Bridge I uses 

structural steel for the girders and stay cables, and reinforced 
concrete for the pylons and deck, as summarized in Tables 1 
and 2. 
 

Table 1. Gerneral Material Properties 

Name Property Value Unit 
Girders 
(Structural 
Steel) 

Young’s 
modulus 

2.10 × 10⁸ kN/ m2 

Density 78.50 kN/ m3 

Poisson’s ratio 0.3 - 
Pylons & 
deck 
(Reinforce 
Concrete) 

Young’s 
modulus 

3.17 × 10⁷ kN/ m2 

Density 23.63 kN/ m3 

Poisson’s ratio 0.2 - 
Asphalt Density 24.50 kN/ m3 

 
Table 2. Cable Properties 

Property Value Unit 

Diameter  0.00157 m 

Tensile strength  1.86 × 106 kN/m2 

Cross-sectional area  1.50 × 10-4 m² 

Mass per meter  0.001147 kN/m 

Modulus of elasticity  1.95 × 108 kN/m² 

 
 

 

 

 

 
326 m 75 m 50 m 75 m 50 m 

105 m 

47 m 
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In the finite element model, stay cables were modeled 
as tension-only elements. Eight scenarios were analyzed to 
examine the effects of discretization and sag (Table 3). Two 
approaches were used: the linear elastic modulus (E₀) 
without sag correction and the Ernst effective modulus (Eᵣₙ ₜs) 
accounting for sag-induced stiffness reduction (Eq. 1). Each 
cable was idealized as a straight line between anchorage 
points (see Figure 3). 

Table 3. Cable Modeling Scenarios 

Case Modulus of 
Elasticity 

No. of Elements 

1 
(Base model) 

𝐸0(100%) 1 element 
(original) 

2 𝐸0(100%) 10 elements 

3 𝐸0(100%) 50 elements 

4 𝐸0(100%) 100 elements 

5 𝐸𝑟𝑛𝑠𝑡 1 element 

6 𝐸𝑟𝑛𝑠𝑡 10 elements 

7 𝐸𝑟𝑛𝑠𝑡 50 elements 

8 𝐸𝑟𝑛𝑠𝑡 100 elements 

 

 
(a) 1- element cable  

 
(b) 10- element cable  

 
(c) 50- element cable  

 
(d) 100- element cable  

Figure 3. Cable modeling configurations for different 
discretization levels and modulus types 

 
3.4 Instrumentation and Sensor Layout 
 Field measurements on the Bhumibol Bridge were 
conducted in two phases: the initial campaign in May 2014 
and an upgraded system in September 2025, as shown in 
Figures 4 and 5. In 2014, a monitoring system was installed to 
collect baseline dynamic data. Accelerometers (AC, 50 Hz) on 
the main girder and the longest stay cables recorded vibration 
responses, while temperature sensors (TS) and displacement 
transducers (DP) measured environmental effects and global 

deflections for initial modal identification and model 
validation. 

The 2025 campaign introduces an enhanced SHM 
system. Selected stay cables, including eight in the back span, 
are equipped with high-sensitivity accelerometers operating 
at 100 Hz to capture detailed vibration responses for 
advanced dynamic analysis and model validation. 
 

 

Figure 4. Sensor layout of the 2014 field measurement, 
showing accelerometers (AC), temperature sensors (TS), and 

displacement transducers (DP) on the girder and cables. 

 

 
Figure 5. layout for the 2025 campaign, featuring 

accelerometers (AC) 

3.6 Resonant Frequencies and Mode Shapes 
The resonant frequencies were identified from 

peaks in the power spectral density (PSD) of the deck’s 
vertical acceleration (Figure 6), computed from five-
minute measurement segments (15,000 data points 
each). The identified peaks corresponding to the first 
four resonant frequencies are illustrated in Figure 7. 

 

 

Figure 6. Locations of accelerometers (AC-101, AC-102, and 
AC-103) installed on the Bhumibol Bridge deck for vibration 

measurements 
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Figure 7. Summary of power spectral density (PSD) of vertical 
deck acceleration, showing the first four resonant frequencies 

 

4.Finite Element Analysis 
4.1 Modal Analysis of the Initial FE Model 

The finite element model of the Bhumibol Bridge I 
was developed from original design drawings in MIDAS 
Civil. Modal analysis was performed to determine 
natural frequencies and mode shapes, with stay cables 
modeled as single tension-only elements. Boundary 
conditions assumed fixed pylons, rigid deck connections, 
and pinned cable ends. The first four FE mode shapes are 
presented in Figure 8, and the comparison with field-
measured frequencies is summarized in Table 4. 

 
Table 4 Natural frequencies comparison between FE 

model and field measurement 
Model FE Model Field 

Measurement 
(Hz) 

Different 
(%) 

1st 0.46482 0.4272 8.81% 
2nd 0.87063 0.8301 4.88% 
3rd 1.12337 1.0742 4.58% 
4th 1.35933 1.3306 2.11% 

 
 
 
 

 
(a) 1st peak (0.46482 Hz) 

 
(b) 2nd peak (0.870631 Hz) 

 

 

(c) 3rd peak (1.12337 Hz) 

 
 
 
 

(d) 4th peak (1.35933 Hz) 

Figure 8. Identified mode shapes of the Bhumibol 
Bridge corresponding to the first four peak frequencies. 

 
4.2 Cable Modeling Scenarios 

To improve accuracy, refined models with 10, 50, 
and 100 elements per cable were developed to account for 
distributed self-weight and realistic deformation behavior. 
The results show a consistent trend across the first four 
bending modes. 

At the first mode, the results show that increasing the 

number of elements enhances the representation of cable 

curvature and local flexibility. However, the calculated 

frequency slightly increases when the cable is divided, and 

shows almost no change between 50 and 100 elements, as 

illustrated in Figure 9. 

 

(a) 1 element cable divided, f = 0.46482 Hz 

(b) 10 element cable divided, f = 0.465787 Hz 

(c)  50 element cable divided, f = 0.465804 Hz 

(d) 100 element cable divided, f = 0.465802 Hz 

Figure 9. Comparison of the first mode shapes with different 
cable element divisions 

The frequency results for different cable modelling 
scenarios compared with field measurements for the 1st–
4th modes, the calculated frequencies slightly increase 



 222 

when the cable is divided, and show almost no change 
between 50 and 100 elements, as shown in Table 5.  

 
Table 5 Comparison of field-measured and FE-calculated 
natural frequencies for different cable element divisions 

Mode Field 
(Hz) 

FE Analysis Result (E0): f(Hz) 

1 
element 
 

10 
element 
 

50 
element 
 

100 
element 
 

1st 0.4272 0.4648 0.4657 0.4658 0.4658 

2nd 0.8301 0.8706 0.8753 0.8757 0.8757 

3rd 1.0742 1.1233 1.1282 1.1277 1.1258 

4th 1.3306 1.3593 1.3591 1.3613 1.3614 

 

 The trend of frequencies shows a slight increase 
beyond 10 elements and remains nearly unchanged after 50 
to 100 elements, as shown in Figure 10. This stabilization 
reflects numerical convergence, where additional 
discretization no longer affects the cable’s stiffness 
representation. Beyond this point, the finite element mesh 
becomes sufficiently refined to capture the cable’s geometric 
nonlinearity and self-weight effects, resulting in consistent 
natural frequencies regardless of further element division. 
  

 
Figure 10. Comparison of natural frequencies for different 

cable element divisions 
 

The slight increase in natural frequencies with 
finer cable element division occurs because multi-
element models more accurately capture the cable’s 
curvature and flexibility, leading to a more realistic 
stiffness distribution. Beyond about 50 elements, 
the frequencies converge as the mesh becomes 
sufficiently refined to represent the cable’s self-
weight and geometric nonlinearity, resulting in 
negligible changes in overall stiffness and dynamic 
response. 

 
4.3 Equivalent Modulus by Ernst Formula 

The stay cables were modeled with a nominal 
modulus of E0=1.95x1011 N/m2.Considering sag effects, 
the equivalent modulus was derived from the Ernst 
formula (Eq. 3), accounting for self-weight, length, and 
initial tension. As shown in Figure. 11–12, the equivalent 
values are up to 5% lower, providing a more realistic 
dynamic representation. 

The reduction in equivalent modulus becomes 
more pronounced in longer cables, as the increased sag 
due to self-weight reduces the effective axial stiffness. 
This behavior reflects the geometric nonlinearity of the 
cable, where a portion of the tensile force is consumed to 
support its own weight rather than resisting dynamic 
deformation. Consequently, longer and more flexible 
cables exhibit slightly lower equivalent stiffness and 
natural frequencies compared to shorter ones. 

 

 
Figure 11. Comparison of nominal elastic modulus (E0) and 

equivalent modulus (Ernst) for each cable, showing the 
reduction in effective stiffness due to the sagging effect 

 

 
Figure 12. Proportional difference between Ernst and E0, 

illustrating reductions of up to 5% for some cables 

 
The decrease in equivalent modulus with longer 

cables occurs because greater sag consumes part of the 
tensile force to support self-weight, reducing effective 
axial stiffness. This geometric nonlinearity leads to 
slightly lower stiffness and natural frequencies, 
indicating that the Ernst-modulus approach realistically 
represents stiffness variation among cables of different 
lengths. 

 
4.4 Comparison Ernst with Constant E0 Assumption 

To evaluate the influence of the sag effect, the results from 
the Ernst-modified modulus (Ernst) were compared with those 
obtained using the constant elastic modulus (E₀). As shown in 
Figure 13, the use of the Ernst modulus slightly lowers the 
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calculated natural frequencies compared to E₀, reflecting the 
stiffness reduction due to cable sag. 

 

 
(a) 1st bending mode vs. cable element division 

 

 
(b) 2nd bending mode vs. cable element division 

 
(c) 3rd bending mode vs. cable element division 

 
(d) 4th bending mode vs. cable element division 

Figure 13 Comparison of field-measured and FE natural 
frequencies using the nominal modulus (E₀) and Ernst-modified 

modulus for different cable divisions. 

The slight reduction in natural frequencies using the 
Ernst-modified modulus reflects the sag-induced stiffness 

reduction of the cable system. This results in a more 
realistic global stiffness, improving the agreement of the 
main structural bending modes with the field-measured 
frequencies compared to the constant E0 assumption, 
thereby enhancing the accuracy of the dynamic analysis. 
 
4.5 Cable Frequency Measurement and Tracking 
Cable Modeling 

Cable frequency measurements were conducted on 
selected stay cables of the Bhumibol Bridge I (Figure 4 and 5) 
.Accelerometers were installed on short, middle, and long 
cables in the back span and the longest cable in the main span 
to record ambient vibrations. The identified FFT peak 
frequencies, used for FE model validation, are summarized in 
Table 6 

Table 6 Representative FFT peak frequencies of 
selected stay cables 

Cable No. Type of 
Cable 

1St Mode 
(Hz) 

2nd Mode 
(Hz) 

MN4B1E Short 1.860 3.721 
MN4B6E Medium 1.160 2.323 
MN4B11E Long 0.781 1.546 
MN3B1W Short 1.873 3.691 
MN3B6W Medium 1.219 2.434 
MN3B11W Long 0.786 1.556 
MN4M12W Longest 0.621 0.887 

 
For tracking the short cable shows consistent mode 

shape across all cases, with frequencies slightly increasing as 
element division refines. The single-element model fails to 
capture the measured behaviour or realistic mode shape as 
shown in Figure 14. 

 
 

 
 

 
Figure 14. Cable shapes and frequencies of a short stay cable 

at the first peak mode with different element divisions, 
compared with field measurement (1.873 Hz). 

 
A similar trend is observed for the first modal 

frequency of cable where the overall frequency 
decreases with increasing cable length. Increasing the 
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number of cable elements slightly raises the frequencies 
in both girder- and cable-dominated modes. However, 
for the second mode of long stay cables, the frequencies 
remain nearly constant beyond 50 elements, while the 
mode shape patterns become smoother. 
 These results show that finer cable discretization 
improves modal accuracy by better representing 
curvature and flexibility. The slight frequency increase 
reflects reduced artificial stiffness in coarse models, while 
convergence beyond 50 elements indicates sufficient 

refinement to capture the cable’s true dynamic behavior. 

 

4.6 Effect of Precamber 
The influence of precamber on cable forces was 

examined using FE models with and without precamber 
based on the Ernst-modified modulus. As shown in Figures 
15–16, the overall force distribution remains nearly 
identical, with differences within ±0.2% and slightly higher 
sensitivity in the back- and main-span regions. Although 
minor, precamber slightly modifies the tension distribution, 

which may affect the bridge’s vibration characteristics. 

 
Figure 15 Tension force distribution in cables with and without 

precamber using the Ernst-modified modulus. 

 

Figure 16 Difference in cable forces between non-precamber 

and precamber cases (±0.2%). 

 
The effect of precamber on modal responses was 

evaluated using the Ernst-modified modulus with 100 cable 
elements. As shown in Table 7, the natural frequencies 
remain close to field data, with precamber slightly reducing 
frequencies in girder-related modes (1st and 2nd). The 

mode shapes also align well with field observations, 
indicating that precamber improves the accuracy of the 
predicted dynamic behavior 

The slight frequency reduction in girder-related 
modes results from precamber altering the initial geometry 
and stiffness distribution, slightly lowering global rigidity. 
This adjustment produces frequencies closer to field data, 
confirming that including precamber improves the realism 
of the dynamic response prediction. 
 

Table 7 Comparison of field and FE frequencies with/without 
precamber (Ernst modulus, 100 elements) 

Mode f (Hz) 
 

Ernst 100 element 
Non precamber 

Ernst 100 element 
precamber 

Field 
Measur
ement 

f (Hz) 
Ernst 
model 

Different 
from filed 
(%) 

f (Hz) 
Ernst 
model 

Different 
from filed 
(%) 

1st 0.4272 0.4617 8.09% 0.4614 8.01% 

2nd 0.8301 0.8714 4.98% 0.8709 4.92% 

3rd 1.0742 1.1258 4.81% 1.1264 4.87% 

4th 1.3306 1.3598 2.20% 1.3627 2.41% 

 

4.7 Validation of FE Model with Field Data 
The comparison between field measurements and 

modeling results in Table 8 shows that when using 100 

elements per cable, the natural frequency gradually 

decreases as the cable length increases. The short cable 

in the back span shows a frequency difference of about 

3–5% between the numerical and measured results. The 

middle cables show the largest difference (15–16%), 

while for the long and longest cables, the differences 

decrease to 7% and 1%, respectively. Moreover, when 

considering the first peak mode (single curve), the 

overall frequency trend consistently decreases with 

increasing cable length, showing a clear relationship 

between cable length and vibration characteristics. 

The decreasing frequency trend with increasing 

cable length occurs because longer cables experience 

greater sag and lower axial stiffness. Short cables remain 

taut and stiffer, producing higher frequencies and 

smaller discrepancies. The larger differences in middle 

cables, where the modeled frequencies are lower than 

the measured values, may be due to underestimation of 

boundary stiffness or pretension, making these cables 

less sensitive to the assumed modeling conditions. 
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Table 8 Comparison of field measurements and modeling 
results for cable vibration frequencies                                     

(100-element cable model) 
Cable No. Type of 

Cable 

Field 

measure

ment 

f(Hz) 

FE 

Modeling 

(Hz) 

Different 

from field 

measure

ment 

(%) 

MN4B1E Short 1.860 1.7728 5 

MN3B1W Short 1.873 1.8144 3 

MN4B6E Medium 1.166 0.9884 15 

MN3B6W Medium 1.219 1.0294 16 

MN4B11E Long 0.781 0.7123 9 

MN3B11W Long 0.786 0.7265 8 

MN4M12W Longest 0.621 0.6263 1 

 

5. Conclusion 
This research clarifies a finite element modeling 

framework that improves the accuracy of cable dynamic 
simulations and enhances the reliability of global structural 
response predictions. The updated cable geometries 
developed under various modeling assumptions show that 
element discretization, realistic stiffness modeling with sag 
effects, and the consideration of precamber significantly 
influence the results. In girder modes, using cables with 
more than 10 elements slightly increases the frequencies, 
while 50–100 elements yield stable values. The stabilization 
beyond 50 elements indicates numerical convergence, 
where the mesh is sufficiently refined to represent cable 
stiffness and sag effects accurately. In cable modes, a single-
element cable cannot reproduce field data, whereas multiple 
elements generate smoother deformation shapes and 
enable the identification of individual vibration modes. The 
Ernst-modified modulus improves the agreement with field 
measurements, and the inclusion of precamber slightly 
reduces the frequencies while enhancing the overall fit. 
Overall, these findings provide a more realistic 
representation of bridge behavior and valuable insights for 
refining finite element models and advancing structural 
health monitoring of large-scale cable-stayed bridges.                
In future work, the modal energy of each structural 
component will be investigated to quantify the contribution 
of the deck, pylons, and stay cables to the global vibration 
characteristics of the bridge. 
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