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Abstract - Considering the increasing number of aging 
infrastructure and the declining availability of skilled 
technicians in Japan, there is a growing demand for more 
efficient maintenance strategies. Leveraging information from 
existing inspection data presents a promising approach to 
address this challenge. This study proposes a novel model-
interpretation-based framework that integrates multiple 
databases to quantitatively evaluate the effects of internal 
structural conditions and environmental factors on the 
corrosion of steel bridge main girders. By enhancing the 
interpretability of predictive models, the proposed framework 
provides actionable insights to support targeted data-driven 
maintenance planning. The proposed approach shows potential 
to be broadly applicable for the maintenance of various civil 
engineering structures, contributing to the development of more 
efficient inspection and maintenance programs, which can 
rapidly adapt to changing environmental conditions. 
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1. Introduction 
Road infrastructure built in Japan during the post-

war economic boom is aging while the maintenance 
workforce continues to decline [1] [2]. In response, 
standardized inspections were mandated in 2014, 
resulting in a nationwide data platform, xROAD (the 
nationally unified data platform) to be constructed. This 
platform remains under construction and is based on the 

digital road map database and other databases, and 
promotes the development of databases for each road 
facility. Integrating these platforms with publicly 
available environmental and bridge data is expected to 
help promote the development of data-based 
technologies that can be used in various fields beyond 
maintenance and management. 

Machine learning (ML) provides powerful 
capabilities for extracting valuable insights from large-
scale infrastructure inspection data. However, although 
complex models can achieve high predictive accuracy, 
their limited interpretability often constrains practical 
implementation in engineering decision-making. Model 
interpretation techniques address this challenge by 
revealing the key factors that drive model predictions 
[3], thereby enhancing transparency, credibility, and the 
overall applicability of ML-based approaches in 
infrastructure asset management. 

Several studies have explored bridge deterioration 
using bridge inspection data from various methods. 
Minami et al. [4] identified coastline proximity and 
material of the structure as key factors in Ishikawa 
Prefecture. Okazaki et al. [5] emphasized the role of age 
in crack propagation for concrete girders. Miao [6] 
applied artificial neural networks (ANN) and sensitivity 
analysis to predict deterioration with approximately 
65% accuracy. Santos et al. [7] used Markov and ANN 
models for inspection interval optimization on over 
10,000 Brazilian bridges. Igarashi and Abe [8] combined 
ensemble learning with interpretability techniques to 
assess crack severity but noted limitations in 
classification-based approaches. Saito [9] used multiple 
regression on public data to evaluate geographic and 
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weather-related factors, highlighting the need for 
bridge-type-specific analysis. While these studies have 
contributed valuable insights, several limitations 
remain. Firstly, many approaches prioritized predictive 
accuracy at the cost of interpretability or relied on 
limited regional datasets, hindering their generalization 
ability and practical use for maintenance planning. 
Secondly, few studies have focused on the corrosion of 
steel bridge main girders, despite their critical role in 
structural safety. 

To bridge these research gaps, this study 
establishes a model-interpretation-based analytical 
framework that integrates nationwide bridge inspection 
records with publicly accessible structural and 
environmental datasets. Focusing specifically on the 
main girders of steel bridges, the proposed framework 
employs interpretable machine learning techniques to 
quantitatively evaluate the relative influence of key 
factors on corrosion progression. Through this 
approach, the study aims to derive actionable, data-
driven insights that can inform more efficient and 
targeted maintenance strategies for aging bridge 
infrastructure. 

 
2. Methodology 
2. 1. Corrosion mechanism 

Corrosion in steel bridges is driven by both 
environmental exposure and structural configuration. It 
occurs when steel is exposed to moisture and oxygen, 
with salts, acids, and higher temperatures accelerating 
the process, particularly in coastal and mountainous 
regions. Structural details such as girder ends and joints 
tend to trap moisture and contaminants, increasing 
deterioration risk. Prolonged sunlight exposure further 
degrades protective coatings, heightening surface 
vulnerability. Accordingly, this study’s data collection 
was designed to capture these environmental and 
structural factors influencing corrosion progression.   
2. 2. Data collection and integration 

In this study, multiple publicly accessible datasets 
were integrated to obtain comprehensive information on 
bridge characteristics, environmental conditions, and 
bridge maintenance history. The primary source of 
inspection data is the national road facility inspection 
database, part of the xROAD platform, which has been 
publicly available since mid-2022. This centralized 
database promotes technological advancement, efficient 
maintenance planning, and academic research by 
providing access to periodic inspection records. It 
includes detailed damage assessments categorized, as 

well as records of various major bridge components, 
along with traffic volumes and large vehicle mixing rates. 

Additional structural and maintenance attributes, 
including bridge type, repair history, and coating 
information, were obtained from MICHI (Bridge 
Management Chart and Road Management Data), which 
provides open access through APIs and downloadable 
datasets. 

Meteorological parameters were derived from 
AMeDAS (Automated Meteorological Data Acquisition 
System), operated by the Japan Meteorological Agency 
(JMA). Two complementary datasets were utilized: long-
term average values from the nearest observation 
stations and high-resolution mesh annual normals 
interpolated from AMeDAS data, thereby enabling 
localized climate characterization for each bridge. 

To further represent environmental exposure, two 
geographical indicators, elevation and distance from the 
shoreline, were incorporated. Elevation data were 
obtained from the Geospatial Information Authority of 
Japan (GSI), while shoreline distances were computed 
based on bridge coordinates and coastal boundary 
datasets. 
2.3. Data Preprocessing 
2.3.1. Deterioration Indicator 

The inspection records used for this study 
document bridge damage taken at three different levels: 
full bridge, per span, and component element. Among 
these, component-level damage can be assessed using a 
quantitative criterion, whereas evaluations at the span 
and bridge levels rely more heavily on the experience 
and subjective judgment of an inspector. 

Indicators of existing bridge health, such as 
soundness level, provide a broad view into overall bridge 
condition but fail to capture the severity of specific 
deterioration types in individual components. However, 
the available data that details the damage level of 
individual component elements is very fragmented and 
inconvenient to use. This hinders the development of 
targeted maintenance strategies, as understanding 
specific deterioration is essential for prioritizing 
interventions and allocating resources efficiently. This 
study has considered several conventional bridge health 
indicators, including the maximum damage level, 
soundness level, and the damage level development rate. 
However, these indicators often lack sensitivity to 
damage distribution or require subjective interpretation 
by inspectors. A new indicator, the damage score per unit 
area (Saa), has therefore been developed in this study to 
overcome these shortcomings. 
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The proposed indicator, Saa, transforms 
component-level damage assessments into quantitative 
scores according to the classification scheme presented 
in Table 1 and normalizes the cumulative damage score 
by the bridge’s deck area (length × width). This 
normalization enables consistent comparison of 
deterioration severity across structures of varying 
dimensions. Designed to capture specific deterioration 
patterns within individual components, Saa provides a 
refined, component-level assessment of structural 
health. Compared with conventional categorical 
soundness ratings, Saa offers three major advantages:  

(1) It supports detailed and component-specific 
maintenance planning, 

(2) It provides continuous rather than discrete 
values, allowing more precise differentiation of damage 
severity,  

(3) It reduces dependence on subjective judgment 
by inspectors, thereby enhancing objectivity and 
reproducibility in condition evaluation. 

 
Table 1: Damage Level to Score.  

Damage Level a b c d e 

Score 0 1 2 3 4 

 
2.3.2. Data cleaning and selection 

The original dataset consisted of 32,174 inspection 
records of both steel and concrete bridges from two 
rounds of nationwide surveys conducted between 2014 
and 2018, and 2019 to 2023. Among these records, 
complete information from both inspections was 
available for 12,279 bridges, and these were merged into 
a single dataset. As this study focuses on the corrosion 
behaviour of steel bridge main girders and to reduce 
noise, the samples were limited to those from steel 
bridges. Among 3,981 steel bridge samples, bridges with 
only simple girder structures (n = 2,005) were selected 
as these structures are more uniform in behaviour and 
easier to compare. Since coating materials affect the 
development of corrosion, only samples (n = 1,365) with 
clearly recorded painting histories were included. 
Finally, to ensure consistency in the coating conditions 
across samples and to avoid the influence of mixed 
coatings, samples with only phthalic resin coating (n = 
375) were selected, as this was the most common 
coating type in the dataset. Figure 1 shows the 
distribution of the selected bridges. Bridges from Kyushu 
and Okinawa are underrepresented in the final dataset. 
These regions have higher annual temperatures and 
different corrosion environments compared with the 

rest of Japan. Because of this imbalance, the model does 
not fully capture how high-temperature conditions 
influence corrosion progression. Adding more samples 
from warm climatic zones would help improve the 
robustness of the model. 

This cleaning and selection process was carried 
out to reduce data noise while ensuring the selected 
dataset retains structural diversity and sufficient 
generality for steel girder bridges. 

 

 
Figure 1. The distribution of the final 375 samples. 

 
2.3.3. Normalization 

 To ensure consistency across variables and 
improve the stability of model training, all feature values 
were normalized to a comparable scale. Based on the 
distributional characteristics of each feature, two 
normalization approaches were adopted according to 
skewness values. Logarithmic scaling for features with 
skewness greater than one, and z-score standardization 
for those with skewness less than or equal to one. Since 
logarithmic transformation requires strictly positive 
values, a data-shifting procedure was applied when 
necessary. Specifically, for any feature x with a minimum 
value min(x) < 1, all observations were adjusted by 
adding (1 − min(x)) before transformation, ensuring that 
the scaled values remained positive and numerically 
stable. 
2.3.4. Dimensionality reduction 

Principal Component Analysis (PCA) was 
employed to reduce feature dimensionality and alleviate 
multicollinearity among correlated variables. By 
deriving orthogonal principal components (PCs) as 
linear combinations of the original features, PCA projects 
high-dimensional data into a lower-dimensional 
subspace while preserving most of the variance. 
Although this transformation inevitably leads to partial 
information loss and reduced interpretability, it 
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enhances model stability and computational efficiency. 
Accordingly, PCA was applied exclusively to groups of 
variables exhibiting strong intercorrelation. 
2.4. Model Selection and Evaluation 

Considering the small dataset size, this study 
avoided overly complex models. This study focuses on 
commonly used nonlinear algorithms that are effective 
in capturing nonlinear patterns and feature interactions, 
namely Support Vector Machine (SVM), Artificial Neural 
Networks (ANNs), Random Forest (RF), and Gaussian 
Process Regression (GPR). Hyperparameter 
optimization enhances performance, which mean 
squared error (MSE) is evaluated. Grid Search is applied 
to both ANN and RF, while Random Search is used for 
GPR and SVM to balance search efficiency with model 
complexity. A 5-fold cross-validation was conducted for 
the accurate assessment of the performance of the model. 
2.5. Model Interpretation 

Model interpretation is a critical tool to help clarify 
the underlying mechanisms of machine learning models 
and facilitate prediction validation, model refinement, 
and extraction of actionable insights. While interpretable 
models such as decision trees permit direct analysis of 
feature contributions, more complex models require 
advanced interpretability techniques. Among these 
techniques, SHapley Additive exPlanations (SHAP) [10], 
proposed in 2017 and grounded in game-theoretic 
Shapley values, has gained prominence for its model-
agnostic nature and capacity to provide local and global 
interpretative insights. Through interpretation algorism, 
it has become possible to quantify feature importance, 
capture feature interactions, and understand their 
influence on model outputs. 

 

3. Results and Discussion 
3.1. Dataset 

There were 375 samples retained after cleaning 
and filtering, where all feature values were normalized 
to an approximate range. Correlation analysis revealed 
strong interdependencies among meteorology-related 
features (Figure 2). Features that exhibited correlation 
coefficients ≥0.7 with at least two other features were 
selected for PCA. PC1 and PC2 are the first and second 
principal components derived through PCA applied to 
highly correlated meteorological features. These 2 
Principal components explained 94.57% of the total 
variance, effectively capturing most of the information in 
the original six features. Accordingly, the original 
variables were replaced by PC1 and PC2 in subsequent 
analyses. As shown in Figure 3, the features remaining 

after the PCA exhibit weaker correlations with each 
other. 

The target variable Saa, introduced in this study, 
quantifies the severity of corrosion damage by 
normalizing damage scores across the bridge area. Saa 
provides a continuous and component-specific measure 
of deterioration, enhancing objectivity compared with 
traditional categorical indicators like soundness level. 

Although the final analytical set only included 375 
bridges, which may appear limited, this sample was 
intentionally selected to maintain uniformity across 
structure and coating and thus improve internal validity. 
A five-fold cross-validation was utilized during the 
model training step to reduce the risk of overfitting due 
to the limited sample size. 

 
Figure 2. Feature Correlation Network. Features are 

connected when their correlation coefficient is greater 
than 0.7. 

 

 
Figure 3. Correlation matrix of input features after PCA. 

 
Table 2: Summary statistics of input features used for model 

training 
 Before Normalization After Normalization 

Features Min  Max Avg Std  Min  Max Mean Std 

Length 7.4  521.1 46.0 51.9  2.0  6.3 3.5 0.7 

Width 4.1  51.5 11.4 4.6  1.4  3.9 2.4 0.3 

Age 19.0  82.0 45.3 9.0  -2.9  4.1 0.0 1.0 

Traffic volume 35  89697 13910 13911.0  3.6  11.4 9.0 1.2 

Large vehicle rate 2.5  69.4 20.3 9.3  -1.9  5.3 0.0 1.0 
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Offshore distance 0.1  106.9 28.9 24.4  -1.2  3.2 0.0 1.0 

Elevation 0.0  1053.1 149.0 189.1  0.0  7.0 4.1 1.5 

Precipitation 778.9  3469.0 1734.3 574.8  -1.7  3.0 0.0 1.0 

Wind Speed 0.0  4.9 2.0 0.8  -2.4  3.5 0.0 1.0 

Painting interval 3.0  50.0 20.4 7.5  -2.3  4.0 0.0 1.0 

PC1       -3.9  4.8 0.0 2.7 

PC2       -2.3  2.6 0.0 0.9 

Saa 0.0  0.8 0.1 0.1  0.0  0.8 0.1 0.1 

3.2. Model 
Table 2 summarizes the statistical characteristics 

of the features used for model training. Table 3 shows the 
minimum cross-validation MSE and hyperparameters, 
where GPR was identified as the most suitable approach. 
The model for interpretation was trained using the 
complete dataset and specified hyperparameters, 
achieving high accuracy (MSE=1.69 × 10-6, 

MAE=4.25×10-4, R2=0.99). Its performance, based on 
MSE considering the full dataset, exceeded that of cross-
validation, raising concerns of overfitting, which limits 
accurate predictions on unseen data. However, since 
hyperparameter tuning guided by cross-validation and 
evaluation occurred on the test set, the performance 
difference is likely due to insufficient data rather than 
overfitting. To improve model performance, it is 
important to ensure an adequate sample size, minimize 
conditional biases during data screening, and perform 
careful hyperparameter tuning within the training 
process. 

 
Table 3: Minimum MSE (CV) results from hyperparameter 

tuning. 
Model MSE(CV) Hyperparameters 

ANN 0.00656 Activation "sigmoid" 
  Layer size [60] 
  Lambda 7.7e-4 

RF 0.00637 Min Leaf Size 3 
  Max Num Splits 155 

GPR 0.00606 Sigma 0.005301 
  Basis Function "linear" 
  Kernel Function "ARDRationalQuadratic" 

SVM 0.00671 Epsilon 0.466 
  Kernal Founction "gaussian" 
  Box Constraint 638.07 

 
3.3. Interpretation 

Table 4 presents Spearman's correlation 
coefficients between each predictor feature and its 
Shapley value. Age, elevation, and length show the 
highest correlations. 

The Shapley analysis results (Figure 4) indicate 
that shorter and narrower bridges exhibit higher 
Shapley values, suggesting that corrosion tends to 
concentrate in smaller structures where girder-end 
regions, typically more prone to moisture retention and 
paint degradation, represent a larger proportion of the 

main girder area. Conversely, the relative influence of 
localized corrosion diminishes as bridge size increases. 
Bridge age shows a strong positive correlation with 
Shapley values, reflecting the cumulative effect of long-
term exposure and material degradation. Although 
proximity to the coastline itself does not directly affect 
the Shapley distribution, bridges located in low-
elevation areas demonstrate higher values, consistent 
with the moderate correlation between elevation and 
offshore distance (ρ = 0.64) and the enhanced corrosion 
risk in coastal environments. Wind speed displays a 
negative association with Shapley values, likely due to its 
role in promoting surface drying and reducing moisture 
accumulation. These findings imply that maintenance 
efforts should prioritize older, smaller bridges situated 
in low-lying, low-wind, and high-precipitation regions. 
As summarized in Figure 5, the five most influential 
factors identified by mean absolute Shapley values are 
PC2 (the dominant meteorological component), traffic 
volume, annual precipitation, bridge width, and bridge 
length.  

 
Table 4. The correlation between feature value and its 

Shapley value.  
Feature Correlation coefficient 

Length -0.75 

Width -0.52 

Age 0.95 

Traffic volume -0.39 

Large vehicle rate 0.28 

Offshore distance -0.45 

Elevation -0.81 

Precipitation 0.54 

Wind Speed -0.58 

Painting interval 0.48 

PC1 0.74 

PC2 0.57 
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Figure 4. Scatter diagrams of each feature value and its 
Shapley value, and the moving average curve. The y-axis 

indicates a feature's Shapley value. 

The analysis revealed a weak negative correlation 

between traffic volume and corrosion severity. 

Although higher traffic volumes are generally expected 

to increase emissions of acidic pollutants that 

accelerate corrosion, this effect was not evident in the 

present dataset. The weak association suggests that 

other factors, such as regional climate, bridge type, or 

maintenance frequency, may play more dominant roles 

in influencing corrosion progression. Further research 

incorporating maintenance records, traffic composition, 

and site-specific environmental data is required to 

clarify the underlying mechanisms governing this 

relationship. 
 

 
Figure 5. Feature importance rank based on average absolute 

Shapley value. 

 

 
Figure 6. Correlation matrix of SHAP values among input 

features 

Figure 6 presents the correlation matrix of the 
SHAP values among all explanatory variables. In Figure 
6, the SHAP values of traffic volume and annual 
precipitation show a clear positive correlation, 

indicating an interaction between these two factors. 
Combined with the trends in Figure 4, this suggests that 
in regions with high precipitation, bridges with low 
traffic volume tend to exhibit larger SHAP values and 
therefore higher corrosion risk. One possible reason is 
that low-traffic bridges in humid climates dry more 
slowly and allow moisture to remain on girder surfaces 
for longer periods, which accelerates corrosion. In daily 
maintenance practice, this implies that low-traffic 
bridges located in wet climatic zones may need more 
attention in inspection, even if their traffic demand is low. 

 While SHAP assumes that features contribute 
independently to the model output, the observed 
correlations indicate that the model jointly utilizes 
several features with similar influence patterns. 
Interestingly, some features with low correlations in the 
input data (see Figure 3) still exhibit strong correlations 
in their SHAP values, implying that the model learns 
nonlinear interactions among them. Therefore, the SHAP 
correlations reflect functional dependencies captured by 
the model rather than simple statistical associations 
among input variables. 

The results highlight that environmental 
conditions and traffic volume play predominant roles in 
bridge deterioration. Due to the small sample size in this 
study, the generalization ability of these results is open 
to discussion. 

 
4. Conclusion 

This study developed an interpretable machine 
learning framework to analyse steel bridge corrosion 
using nationwide inspection data. By integrating 
structural, environmental, and maintenance databases 
and introducing a new corrosion indicator (Saa), the 
framework quantified the influence of key factors with 
high interpretability through SHAP analysis. Results 
highlighted that meteorological conditions, bridge 
geometry, and traffic volume are dominant in corrosion 
progression. Despite limitations in sample size and 
spatial balance, this approach establishes a foundation 
for scalable, data-driven, and transparent maintenance 
planning. Furthermore, by capturing the relationships 
between environmental factors and deterioration 
mechanisms, the proposed framework offers potential 
for assessing future corrosion risks under evolving 
climatic conditions. Future work will integrate sensor-
based monitoring and spatial–temporal modelling to 
enhance real-time adaptability and support smart 
infrastructure management. 
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