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Abstract - Considering the increasing number of aging
infrastructure and the declining availability of skilled
technicians in Japan, there is a growing demand for more
efficient maintenance strategies. Leveraging information from
existing inspection data presents a promising approach to
address this challenge. This study proposes a novel model-
interpretation-based framework that integrates multiple
databases to quantitatively evaluate the effects of internal
structural conditions and environmental factors on the
corrosion of steel bridge main girders. By enhancing the
interpretability of predictive models, the proposed framework
provides actionable insights to support targeted data-driven
maintenance planning. The proposed approach shows potential
to be broadly applicable for the maintenance of various civil
engineering structures, contributing to the development of more
efficient inspection and maintenance programs, which can
rapidly adapt to changing environmental conditions.
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1. Introduction

Road infrastructure built in Japan during the post-
war economic boom is aging while the maintenance
workforce continues to decline [1] [2]. In response,
standardized inspections were mandated in 2014,
resulting in a nationwide data platform, xROAD (the
nationally unified data platform) to be constructed. This
platform remains under construction and is based on the
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digital road map database and other databases, and
promotes the development of databases for each road
facility. Integrating these platforms with publicly
available environmental and bridge data is expected to
help promote the development of data-based
technologies that can be used in various fields beyond
maintenance and management.

Machine learning (ML) provides powerful
capabilities for extracting valuable insights from large-
scale infrastructure inspection data. However, although
complex models can achieve high predictive accuracy,
their limited interpretability often constrains practical
implementation in engineering decision-making. Model
interpretation techniques address this challenge by
revealing the key factors that drive model predictions
[3], thereby enhancing transparency, credibility, and the
overall applicability of ML-based approaches in
infrastructure asset management.

Several studies have explored bridge deterioration
using bridge inspection data from various methods.
Minami et al. [4] identified coastline proximity and
material of the structure as key factors in Ishikawa
Prefecture. Okazaki et al. [5] emphasized the role of age
in crack propagation for concrete girders. Miao [6]
applied artificial neural networks (ANN) and sensitivity
analysis to predict deterioration with approximately
65% accuracy. Santos et al. [7] used Markov and ANN
models for inspection interval optimization on over
10,000 Brazilian bridges. Igarashi and Abe [8] combined
ensemble learning with interpretability techniques to
assess crack severity but noted limitations in
classification-based approaches. Saito [9] used multiple
regression on public data to evaluate geographic and



weather-related factors, highlighting the need for
bridge-type-specific analysis. While these studies have
contributed valuable insights, several limitations
remain. Firstly, many approaches prioritized predictive
accuracy at the cost of interpretability or relied on
limited regional datasets, hindering their generalization
ability and practical use for maintenance planning.
Secondly, few studies have focused on the corrosion of
steel bridge main girders, despite their critical role in
structural safety.

To bridge these research gaps, this study
establishes a model-interpretation-based analytical
framework that integrates nationwide bridge inspection
records with publicly accessible structural and
environmental datasets. Focusing specifically on the
main girders of steel bridges, the proposed framework
employs interpretable machine learning techniques to
quantitatively evaluate the relative influence of key
factors on corrosion progression. Through this
approach, the study aims to derive actionable, data-
driven insights that can inform more efficient and
targeted maintenance strategies for aging bridge
infrastructure.

2. Methodology
2. 1. Corrosion mechanism

Corrosion in steel bridges is driven by both
environmental exposure and structural configuration. It
occurs when steel is exposed to moisture and oxygen,
with salts, acids, and higher temperatures accelerating
the process, particularly in coastal and mountainous
regions. Structural details such as girder ends and joints
tend to trap moisture and contaminants, increasing
deterioration risk. Prolonged sunlight exposure further
degrades protective coatings, heightening surface
vulnerability. Accordingly, this study’s data collection
was designed to capture these environmental and
structural factors influencing corrosion progression.
2. 2. Data collection and integration

In this study, multiple publicly accessible datasets
were integrated to obtain comprehensive information on
bridge characteristics, environmental conditions, and
bridge maintenance history. The primary source of
inspection data is the national road facility inspection
database, part of the xROAD platform, which has been
publicly available since mid-2022. This centralized
database promotes technological advancement, efficient
maintenance planning, and academic research by
providing access to periodic inspection records. It
includes detailed damage assessments categorized, as
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well as records of various major bridge components,
along with traffic volumes and large vehicle mixing rates.

Additional structural and maintenance attributes,
including bridge type, repair history, and coating
information, were obtained from MICHI (Bridge
Management Chart and Road Management Data), which
provides open access through APIs and downloadable
datasets.

Meteorological parameters were derived from
AMeDAS (Automated Meteorological Data Acquisition
System), operated by the Japan Meteorological Agency
(JMA). Two complementary datasets were utilized: long-
term average values from the nearest observation
stations and high-resolution mesh annual normals
interpolated from AMeDAS data, thereby enabling
localized climate characterization for each bridge.

To further represent environmental exposure, two
geographical indicators, elevation and distance from the
shoreline, were incorporated. Elevation data were
obtained from the Geospatial Information Authority of
Japan (GSI), while shoreline distances were computed
based on bridge coordinates and coastal boundary
datasets.

2.3. Data Preprocessing
2.3.1. Deterioration Indicator

The inspection records used for this study
document bridge damage taken at three different levels:
full bridge, per span, and component element. Among
these, component-level damage can be assessed using a
quantitative criterion, whereas evaluations at the span
and bridge levels rely more heavily on the experience
and subjective judgment of an inspector.

Indicators of existing bridge health, such as
soundness level, provide a broad view into overall bridge
condition but fail to capture the severity of specific
deterioration types in individual components. However,
the available data that details the damage level of
individual component elements is very fragmented and
inconvenient to use. This hinders the development of
targeted maintenance strategies, as understanding
specific deterioration is essential for prioritizing
interventions and allocating resources efficiently. This
study has considered several conventional bridge health
indicators, including the maximum damage level,
soundness level, and the damage level development rate.
However, these indicators often lack sensitivity to
damage distribution or require subjective interpretation
by inspectors. A new indicator, the damage score per unit
area (Saa), has therefore been developed in this study to
overcome these shortcomings.



The proposed indicator, S,, transforms
component-level damage assessments into quantitative
scores according to the classification scheme presented
in Table 1 and normalizes the cumulative damage score
by the bridge’s deck area (length x width). This
normalization enables consistent comparison of
deterioration severity across structures of varying
dimensions. Designed to capture specific deterioration
patterns within individual components, Saa provides a
refined, component-level assessment of structural
health. Compared with conventional categorical
soundness ratings, S.. offers three major advantages:

(1) It supports detailed and component-specific
maintenance planning,

(2) It provides continuous rather than discrete
values, allowing more precise differentiation of damage
severity,

(3) It reduces dependence on subjective judgment
by inspectors, thereby enhancing objectivity and
reproducibility in condition evaluation.

Table 1: Damage Level to Score.
a b c
0 1 2

Damage Level
Score

2.3.2. Data cleaning and selection

The original dataset consisted of 32,174 inspection
records of both steel and concrete bridges from two
rounds of nationwide surveys conducted between 2014
and 2018, and 2019 to 2023. Among these records,
complete information from both inspections was
available for 12,279 bridges, and these were merged into
a single dataset. As this study focuses on the corrosion
behaviour of steel bridge main girders and to reduce
noise, the samples were limited to those from steel
bridges. Among 3,981 steel bridge samples, bridges with
only simple girder structures (n = 2,005) were selected
as these structures are more uniform in behaviour and
easier to compare. Since coating materials affect the
development of corrosion, only samples (n = 1,365) with
clearly recorded painting histories were included.
Finally, to ensure consistency in the coating conditions
across samples and to avoid the influence of mixed
coatings, samples with only phthalic resin coating (n =
375) were selected, as this was the most common
coating type in the dataset. Figure 1 shows the
distribution of the selected bridges. Bridges from Kyushu
and Okinawa are underrepresented in the final dataset.
These regions have higher annual temperatures and
different corrosion environments compared with the
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rest of Japan. Because of this imbalance, the model does
not fully capture how high-temperature conditions
influence corrosion progression. Adding more samples
from warm climatic zones would help improve the
robustness of the model.

This cleaning and selection process was carried
out to reduce data noise while ensuring the selected
dataset retains structural diversity and sufficient
generality for steel girder bridges.
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Figure 1. The distribution of the final 375 samples.

2.3.3. Normalization

To ensure consistency across variables and
improve the stability of model training, all feature values
were normalized to a comparable scale. Based on the
distributional characteristics of each feature, two
normalization approaches were adopted according to
skewness values. Logarithmic scaling for features with
skewness greater than one, and z-score standardization
for those with skewness less than or equal to one. Since
logarithmic transformation requires strictly positive
values, a data-shifting procedure was applied when
necessary. Specifically, for any feature x with a minimum
value min(x) < 1, all observations were adjusted by
adding (1 - min(x)) before transformation, ensuring that
the scaled values remained positive and numerically
stable.
2.3.4. Dimensionality reduction

Principal Component Analysis (PCA) was
employed to reduce feature dimensionality and alleviate
multicollinearity among correlated variables. By
deriving orthogonal principal components (PCs) as
linear combinations of the original features, PCA projects
high-dimensional data into a lower-dimensional
subspace while preserving most of the variance.
Although this transformation inevitably leads to partial
information loss and reduced interpretability, it



enhances model stability and computational efficiency.
Accordingly, PCA was applied exclusively to groups of
variables exhibiting strong intercorrelation.
2.4. Model Selection and Evaluation

Considering the small dataset size, this study
avoided overly complex models. This study focuses on
commonly used nonlinear algorithms that are effective
in capturing nonlinear patterns and feature interactions,
namely Support Vector Machine (SVM), Artificial Neural
Networks (ANNs), Random Forest (RF), and Gaussian
Process Regression (GPR). Hyperparameter
optimization enhances performance, which mean
squared error (MSE) is evaluated. Grid Search is applied
to both ANN and RF, while Random Search is used for
GPR and SVM to balance search efficiency with model
complexity. A 5-fold cross-validation was conducted for

the accurate assessment of the performance of the model.

2.5. Model Interpretation

Model interpretation is a critical tool to help clarify
the underlying mechanisms of machine learning models
and facilitate prediction validation, model refinement,
and extraction of actionable insights. While interpretable
models such as decision trees permit direct analysis of
feature contributions, more complex models require
advanced interpretability techniques. Among these
techniques, SHapley Additive exPlanations (SHAP) [10],
proposed in 2017 and grounded in game-theoretic
Shapley values, has gained prominence for its model-
agnostic nature and capacity to provide local and global
interpretative insights. Through interpretation algorism,
it has become possible to quantify feature importance,
capture feature interactions, and understand their
influence on model outputs.

3. Results and Discussion
3.1. Dataset

There were 375 samples retained after cleaning
and filtering, where all feature values were normalized
to an approximate range. Correlation analysis revealed
strong interdependencies among meteorology-related
features (Figure 2). Features that exhibited correlation
coefficients 20.7 with at least two other features were
selected for PCA. PC1 and PC2 are the first and second
principal components derived through PCA applied to
highly correlated meteorological features. These 2
Principal components explained 94.57% of the total
variance, effectively capturing most of the information in
the original six features. Accordingly, the original
variables were replaced by PC1 and PC2 in subsequent
analyses. As shown in Figure 3, the features remaining
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after the PCA exhibit weaker correlations with each
other.

The target variable S.,, introduced in this study,
quantifies the severity of corrosion damage by
normalizing damage scores across the bridge area. Saa
provides a continuous and component-specific measure
of deterioration, enhancing objectivity compared with
traditional categorical indicators like soundness level.

Although the final analytical set only included 375
bridges, which may appear limited, this sample was
intentionally selected to maintain uniformity across
structure and coating and thus improve internal validity.
A five-fold cross-validation was utilized during the
model training step to reduce the risk of overfitting due
to the limited sample size.
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Figure 2. Feature Correlation Network. Features are
connected when their correlation coefficient is greater

than 0.7.
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Figure 3. Correlation matrix of input features after PCA.

Table 2: Summary statistics of input features used for model
training

Before Normalization

After Normalization
Min
7.4
4.1
19.0
35
2.5

Max
521.1
51.5
82.0
89697
69.4

Std
51.9

Min
2.0
1.4
-29
3.6
-1.9

Max
6.3
39
4.1

11.4
5.3

Std
0.7
0.3
1.0
1.2
1.0

Mean
3.5
2.4
0.0
9.0
0.0

Features Avg
46.0
11.4 4.6
45.3 9.0

13910 13911.0

20.3 9.3

Length
Width
Age
Traffic volume

Large vehicle rate



0.1
0.0
778.9
0.0
3.0

106.9 28.9

1053.1  149.0

3469.0 1734.3
4.9 2.0
50.0 20.4
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189.1
574.8

0.8
7.5

-1.2
0.0
-1.7
-2.4
-2.3
-3.9
-2.3
0.0

3.2
7.0
3.0
35
4.0
4.8
2.6
0.8

0.0
4.1
0.0
0.0
0.0
0.0
0.0
0.1

1.0
1.5
1.0
1.0
1.0
2.7
0.9
0.1

Offshore distance
Elevation
Precipitation
Wind Speed
Painting interval
PC1
pPC2
Saa

3.2. Model

Table 2 summarizes the statistical characteristics
of the features used for model training. Table 3 shows the
minimum cross-validation MSE and hyperparameters,
where GPR was identified as the most suitable approach.
The model for interpretation was trained using the
complete dataset and specified hyperparameters,
achieving high accuracy (MSE=1.69 X 10-6,
MAE=4.25x10-4, R2=0.99). Its performance, based on
MSE considering the full dataset, exceeded that of cross-
validation, raising concerns of overfitting, which limits
accurate predictions on unseen data. However, since
hyperparameter tuning guided by cross-validation and
evaluation occurred on the test set, the performance
difference is likely due to insufficient data rather than
overfitting. To improve model performance, it is
important to ensure an adequate sample size, minimize
conditional biases during data screening, and perform
careful hyperparameter tuning within the training
process.

0.0 0.8 0.1 0.1

Table 3: Minimum MSE (CV) results from hyperparameter

tuning.
Model MSE(CV) Hyperparameters
ANN 0.00656 Activation "sigmoid"
Layer size [60]
Lambda 7.7e-4
RF 0.00637 Min Leaf Size 3
Max Num Splits 155
GPR 0.00606 Sigma 0.005301
Basis Function "linear"
Kernel Function  "ARDRationalQuadratic"
SVM 0.00671 Epsilon 0.466
Kernal Founction ""gaussian”
Box Constraint 638.07

3.3. Interpretation

Table 4 presents Spearman's correlation
coefficients between each predictor feature and its
Shapley value. Age, elevation, and length show the
highest correlations.

The Shapley analysis results (Figure 4) indicate
that shorter and narrower bridges exhibit higher
Shapley values, suggesting that corrosion tends to
concentrate in smaller structures where girder-end
regions, typically more prone to moisture retention and
paint degradation, represent a larger proportion of the
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main girder area. Conversely, the relative influence of
localized corrosion diminishes as bridge size increases.
Bridge age shows a strong positive correlation with
Shapley values, reflecting the cumulative effect of long-
term exposure and material degradation. Although
proximity to the coastline itself does not directly affect
the Shapley distribution, bridges located in low-
elevation areas demonstrate higher values, consistent
with the moderate correlation between elevation and
offshore distance (p = 0.64) and the enhanced corrosion
risk in coastal environments. Wind speed displays a
negative association with Shapley values, likely due to its
role in promoting surface drying and reducing moisture
accumulation. These findings imply that maintenance
efforts should prioritize older, smaller bridges situated
in low-lying, low-wind, and high-precipitation regions.
As summarized in Figure 5, the five most influential
factors identified by mean absolute Shapley values are
PC2 (the dominant meteorological component), traffic
volume, annual precipitation, bridge width, and bridge
length.

Table 4. The correlation between feature value and its

Shapley value.
Feature Correlation coefficient
Length -0.75
Width -0.52
Age 0.95
Traffic volume -0.39
Large vehicle rate 0.28
Offshore distance -0.45
Elevation -0.81
Precipitation 0.54
Wind Speed -0.58
Painting interval 0.48
PC1 0.74
PC2 0.57
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Figure 4. Scatter diagrams of each feature value and its
Shapley value, and the moving average curve. The y-axis
indicates a feature's Shapley value.

The analysis revealed a weak negative correlation
between traffic volume and corrosion severity.
Although higher traffic volumes are generally expected
to increase emissions of acidic pollutants that
accelerate corrosion, this effect was not evident in the
present dataset. The weak association suggests that
other factors, such as regional climate, bridge type, or
maintenance frequency, may play more dominant roles
in influencing corrosion progression. Further research
incorporating maintenance records, traffic composition,
and site-specific environmental data is required to
clarify the underlying mechanisms governing this
relationship.
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Figure 5. Feature importance rank based on average absolute

Shapley value.
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Figure 6. Correlation matrix of SHAP values among input
features

Figure 6 presents the correlation matrix of the
SHAP values among all explanatory variables. In Figure
6, the SHAP values of traffic volume and annual
precipitation show a clear positive correlation,
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indicating an interaction between these two factors.
Combined with the trends in Figure 4, this suggests that
in regions with high precipitation, bridges with low
traffic volume tend to exhibit larger SHAP values and
therefore higher corrosion risk. One possible reason is
that low-traffic bridges in humid climates dry more
slowly and allow moisture to remain on girder surfaces
for longer periods, which accelerates corrosion. In daily
maintenance practice, this implies that low-traffic
bridges located in wet climatic zones may need more
attention in inspection, even if their traffic demand is low.

While SHAP assumes that features contribute
independently to the model output, the observed
correlations indicate that the model jointly utilizes
several features with similar influence patterns.
Interestingly, some features with low correlations in the
input data (see Figure 3) still exhibit strong correlations
in their SHAP values, implying that the model learns
nonlinear interactions among them. Therefore, the SHAP
correlations reflect functional dependencies captured by
the model rather than simple statistical associations
among input variables.

The results highlight that environmental
conditions and traffic volume play predominant roles in
bridge deterioration. Due to the small sample size in this
study, the generalization ability of these results is open
to discussion.

4. Conclusion

This study developed an interpretable machine
learning framework to analyse steel bridge corrosion
using nationwide inspection data. By integrating
structural, environmental, and maintenance databases
and introducing a new corrosion indicator (Sa.), the
framework quantified the influence of key factors with
high interpretability through SHAP analysis. Results
highlighted that meteorological conditions, bridge
geometry, and traffic volume are dominant in corrosion
progression. Despite limitations in sample size and
spatial balance, this approach establishes a foundation
for scalable, data-driven, and transparent maintenance
planning. Furthermore, by capturing the relationships
between environmental factors and deterioration
mechanisms, the proposed framework offers potential
for assessing future corrosion risks under evolving
climatic conditions. Future work will integrate sensor-
based monitoring and spatial-temporal modelling to
enhance real-time adaptability and support smart
infrastructure management.
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